
Preprint.

JET EXPANSIONS OF RESIDUAL COMPUTATION

Yihong Chenà, Xiangxiang Xuê, Yao Luà, Pontus Stenetorpà, Luca Franceschiæ
àUCL Centre for Artificial Intelligence, London, UK
êMIT, EECS, USA æAmazon Web Services, Berlin, Germany
{yihong.chen, p.stenetorp, yao.lu}@cs.ucl.ac.uk,
xuxx@mit.edu, franuluc@amazon.de

ABSTRACT

We introduce a framework for expanding residual computational graphs using jets,
operators that generalize truncated Taylor series. Our method provides a sys-
tematic approach to disentangle contributions of different computational paths to
model predictions. In contrast to existing techniques such as distillation, probing,
or early decoding, our expansions rely solely on the model itself and requires no
data, training, or sampling from the model. We demonstrate how our framework
grounds and subsumes logit lens, reveals a (super-)exponential path structure in
the recursive residual depth and opens up several applications. These include
sketching a transformer large language model with n-gram statistics extracted
from its computations, and indexing the models’ levels of toxicity knowledge.
Our approach enables data-free analysis of residual computation for model inter-
pretability, development, and evaluation. The project website can be found here.

1 INTRODUCTION

Machine learning models, particularly large-scale foundation models, have become increasingly
prevalent and impactful across a wide range of domains (Wei et al., 2021; Bommasani et al., 2023;
Touvron et al., 2023b). While delivering strong results, their black-box nature has led to the de-
velopment of techniques to assess their behavior and gain insights into their internal mechanisms.
In this space, mechanistic interpretability (MI) (see e.g. Bereska & Gavves, 2024; Ferrando et al.,
2024, for recent surverys) has emerged as an alternative to more classic local attribution methods
such as SHAP (Lundberg, 2017) or integrated gradient (Sundararajan et al., 2017). Contrary to these
methods, which seeks to trace output behavior back to the network input, MI focuses on tracing be-
havior back to the model itself. It seeks to uncover learned “algorithms” that are embedded in the
model weights and computational structure, with the aim of developing a global understanding of –
and, ultimately, to reverse engineer – neural computation.

The great majority of MI work uses a hypothesis-and-dataset-driven approach (see for example
Goldowsky-Dill et al. (2023)), in that it first formalizes a hypothesis, then chooses or curates a
dataset to probe the model, it applies techniques such as path patching (Wang et al., 2022) or causal
tracing (Meng et al., 2022), and then possibly refines the initial hypothesis. While this approach
to MI is valuable, it can limit the ability to perform open-ended exploration-driven studies aimed
at uncovering global behavior and charting “maps” that connect computation to behavior. In this
regard, studies such as Veit et al. (2016) or Elhage et al. (2021) focus on the intrinsic computation
that is carried out by a model, offering complementary views to the hypothesis-and-dataset-driven
approach. Yet, these studies often make unrealistic assumptions of the model, making it unclear how
much of the derived understanding can be transferred to real-world models and applications.

This paper contributes to this latter direction, presenting a general-purpose framework to manipulate
the computational graph of a neural model with the aim of identifying individual input-to-output
computational paths, which we can then further analyze to extract behavior. Our method is based on
the simple observation that we can recursively expand the computation of a network by selectively
applying jet operators (Ehresmann, 1951), which one can think of as the functional counterpart
of truncated Taylor series. This process, which we call the jet expansion of a model, gives rise
to a class of equivalent functional rewritings of the original network into the sum of polynomial
terms (which we see as input-to-output functions and dub jet paths) and non-linear remainders.

1

https://yihong-chen.github.io/jet_expand/

Preprint.

The framework does not make particular assumptions on the input model and, as it operates in
the space of functions (rather than function evaluations), it requires no input data. For transformer
language models, we also show how specific instantiations linked to n-gram models make it feasible
to exhaustively evaluate the jet paths over the entire input space, enabling end-to-end data-free global
interpretability studies.

In this work, we focus on residual networks (He et al., 2016) – particularly transformers (Vaswani
et al., 2017) – and operate at the granularity of residual blocks (e.g., self-attention or MLP blocks).
This approach simplifies our presentation, while aligning with previous literature such as (Veit et al.,
2016), and maintains practical relevance given the prevalence of residual networks for real-world
applications. We describe several instantiations of our framework in Section 4, showing how it
encompasses previously proposed interpretability tools such as the logit lens (nostalgebraist, 2021b).
Based on these instantiations, we present an extensive set of case studies on several auto-regressive
large language models (LLMs) from varying families and sizes, including GPT, Llama and OLMo.
Our case studies demonstrate jet expansion offers a suite of powerful tools – jet lens, jet paths and
jet n-grams – to perform multi-scenario LLM interpretability: i) understanding the inner working
of an LLM (Section 5.1); ii) debugging the pretraining dynamic (Section 5.2); and iii) examining
fine-tuning effects (Section 5.3), which are useful for improving transparent and responsible usages
of LLMs. We close with a discussion about the potential directions of future research that this work
opens, alongside its current limitations.

2 RESIDUAL NETWORKS AND THEIR REWRITINGS

We start by reviewing the archetypal computational structure of residual networks and discuss the
case of linear residual networks as a canonical example of functions that are intrinsically expanded.
Residual networks. We focus on network architectures whose main body consists of multiple
recursive residual blocks, while the input and output are managed respectively by an encoding and
a decoding module. Let Z be an input space (e.g., sequences of tokens), c ∈ N+ be the number
of classes (e.g., a vocabulary size), Y = Rc be a space of output logits and d ∈ N+ be a hidden
dimension. Formally, we are concerned with functions q : Z → Y described as follows:

q = υ ◦ hL, where hL : Z → Rd, hL =⃝L
l=1βl ◦ η, (1)

where L ∈ N+ is the number of residual blocks (e.g. recursive depth), η : Z → Rd is an input
encoding module (e.g. token embedding layer),⃝ denotes repeated functional composition, and

βl : Rd → Rd for l ∈ [L] βl = id + γl, γl : Rd → Rd, (2)

υ : Rd → Y υ(x) = U γL+1(x) U ∈ Rc×d, γ : Rd → Rd, (3)
are respectively residual blocks with nonlinearities γl’s (e.g., input-normalized causal self-attentions
or MLPs), and the output decoding module (e.g., an unembedding projection U after a layer nor-
malization γL+1); id is the identity map. We leave all parameters implicit and assume all func-
tions are C∞. Optimized for classification (e.g., next token prediction for autoregressive lan-
guage models), the function q outputs unnormalized conditional probabilities (or logits) in that
Pq(“z belongs to class i”|z) = Softmax[q(z)]i, for z ∈ Z . In residual networks, the recursive
links allow the “storage” of computation from all previous layers and the embedded input, leading
to an accumulation of information across depths. This is highlighted by unrolling the computation
of Equation (1) up to a block l ∈ [L], setting h0 = η:

hl =⃝l
j=1βj ◦ η = η +

∑l
j=1 γj ◦ hj−1; q = υ ◦ η +

∑L
l=1 υ ◦ γl ◦ hl−1 (4)

Elhage et al. (2021) introduces the term residual stream to describe hl, a concept that can be traced
back to Hochreiter & Schmidhuber (1997) and Srivastava et al. (2015). Veit et al. (2016) describe
and study the unrolled structure of the final residual stream hL, which reveals a number of paths
from the input to the decoder that grows linearly with the network depth.
Linear residual networks. The presence of non-linearities at each block (and at the decoding
module) prevents us from directly expanding the input-to-output computation further.1 Linear resid-
ual networks, represented in Equation (5), do not have this impediment. Indeed, if γi(x) = Aix for

1One can still recover an exponential expansion of gradient paths when considering ∇q, e.g. to analyze
behavior during training, as Veit et al. (2016) do. In this work, however, we solely focus on the forward
dynamic of the network.

2

Preprint.

E

U

E

U

A2

A1

A2

A1

E

U

A1

A2

E

U

E

U

A1

E

U

A2

E

U

A1

A2= =

(a) (b) (c) (d)

“Exponential” model rewriting
q∅ q{1} q{2} q{1,2}

Abstract

Nuanced

=

Re
si

du
al

 s
tre

am

Figure 1: Various equivalent representations of a two-blocks linear residual network. In particular (b) highlights
the residual stream of eq. (4); (d) highlights the exponential rewriting of Equation (5).

some Ai ∈ Rd×d, η = E and γ = id, we have that

q = U(
∑

S∈2[L]

∏
j∈S Aj)E =

∑
S∈2[L] qS (5)

where 2[L] is the power set of [L] = {1, . . . , L} and the qS = U(
∏

j∈S Aj)E = UWSE, with
W∅ = I . Equation (5) writes (“expands”) the linear network into a combination of 2L input-
to-output paths qS : Z → Y , themselves linear functions. This enables a detailed analysis of
each path’s contributions (e.g. one may look at the norm of each WS as a measure of global path
importance), roles, and interactions, as well as understanding global input-output relationships.

3 RECURSIVE EXPANSION OF RESIDUAL NETWORKS WITH JETS

To tackle non-linearities and enable expansions in general residual networks similar to that of Equa-
tion (5), we turn to jets (Ehresmann, 1951), which generalize Taylor expansions. In this section, we
first introduce key concepts pertaining jets that are instrumental in developing our framework. Then
we move to develop jet expand, the general algorithm for expanding residual nets into atomic
input-output computational paths.
Jet operators and their convex combinations We recall that, for a function f ∈ Ck+1(Rd,Rd)
and x, y ∈ Rd, Taylor’s theorem asserts that

f(y) = f(x) +
∑k

j=1(j!)
−1Djf(x)(y − x)⊗j +O(∥y − x∥k+1) (6)

where x, y are respectively the center and variate, Dj denotes the j-th differential, (y−x)⊗j denotes
the j-fold tensor product, and O(∥y − x∥k+1) denotes the class of functions that vanish at least as
fast as a degree-(k + 1) polynomial M∥y − x∥k+1 as y → x for some M > 0. The k-th order jet
operator of a function f maps vectors to equivalence classes of degree-k polynomial functions (we
denote the resulting quotient space by P k in the equation below, details in the appendix) as follows:

Jkf : Rd → Pk Jkf(x) = f(x) +
∑k

j=1(j!)
−1 Djf(x). (7)

Evaluating the jet at a variate y ∈ Rd yields the truncated Taylor expansion Jkf(x)(y) ∈ Rd, that
is, Equation (6) without the “O” term. The main advantage of working with jets rather than Taylor
expansions is that we can work directly with functions rather than vectors. We will make extensive
use of the following lemma, of which the proof can be found in the appendix, along with further
details about jets.
Lemma 1 (Convex combinations of jets). Let f ∈ C∞(Rd,Rd), k ∈ N, N ∈ N+, {xi}i∈[N] be a
set of jet centers, w ∈ △N−1 ⊂ RN be a set of jet weights, and r = maxi{wi∥xi−

∑
j xj∥}. Then

Jkf
(∑N

i=1 xi

)
=

∑N
i=1 wiJ

kf(xi) +O(rk+1).

Remark 1 (Jet centers and variates as functions). We will often want to trace the computation of a
jet back to the input space Z . In such cases, we interpret the jet centers x’s and the variates y’s as
functions of the original network input z ∈ Z onto Rd or Y . Thus, we have that Jkf(x)(y) : Z →
Rd (or Y) which evaluates as follows: Jkf(x)(y)(z) = Jkf(x(z))(y(z)).

3

Preprint.

η

υ

γ1

Jkγ2Jkγ2

η

υ

γ1

γ2

(a-II) (b) (c)

jet center

jet variate

direct

dependency

η

υ

γ1

input

encoding

output

decoding
intermediate

nonlinearity

η

γ1

Jkγ2Jkγ2

Jkυ Jkυ Jkυ Jkυ

η

υ

γ2

γ1
=

(a-I)

x∅
Figure 2: Representation of a two-blocks residual net (a, a-bis) and its exponential expansion steps (b, c).

Exponential expansion of a two-blocks network. Before introducing the main algorithm, we
start with a minimal example of an expansion of a network with two residual blocks into four input-
to-output paths. The network, represented in Figure 2 (a) and (a-bis), is given by:

q = υ ◦ h; h2 = β2 ◦ β1 ◦ η = η + γ1 ◦ η + γ2 ◦ (η + γ1 ◦ η) (8)

The final residual stream h2 is a sum of three terms (input-to-hidden-space functions). In a trans-
former network, γ1 could represent a self-attention block and γ2 an MLP block – typically both
transformations being input-normalized. Critically, the last term γ2 ◦ (η + γ1 ◦ η) does not allow us
to directly single out contributions that involve γ2 and η or γ1 ◦ η alone. To recover such paths, we
can jet-expand β2 and apply Lemma 1 choosing as centers x∅ = η and x{1} = γ1 ◦ η, obtaining:

Jkβ2(x∅ + x{1}) =w1J
kβ2(x∅) + w2J

kβ2(x{1}) +O(rk+1)

=x∅ + x{1} + w1J
kγ2(x∅) + w2J

kγ2(x{1}) +O(rk+1
β2

),
(9)

where the last equality holds for k ≥ 1. 2 This operation is represented in Figure 2 (b). These
terms still do not yield input-to-output paths, as in general γ3 ̸= id (in transformer architecture this
is typically a normalization operation, e.g. layer norm). We can again proceed with a jet expansion,
this time of the decoding module υ = U γ3. Continuing with our example, we apply Lemma 1
using as centers the outputs of the previous expansion, namely x∅, x{1}, x{2} = w1J

kγ2(x∅) and
x{1,2} = w2J

kγ2(x{1}), obtaining

Jkυ(x∅ + x{1} + x{2} + x{1,2}) =
∑

S∈2[2] ω1U Jkγ3(xS) +O(rk+1
υ) (10)

where ω ∈ ∆3 is a vector of jet weights. With this operation, represented by Figure 2 (c), we
have obtained four input-to-output paths, mimicking the exponential rewriting of the linear case;
cf. Equation (5). For instance, the zeroth order (k = 0) path that passes through the second non-
linearity only, skipping the first, is given by the function z ∈ Z → ω3U γ3(w1γ2(η(z))) ∈ Y . This
example demonstrates the key principles of our approach: recursive expansion of the computational
graph using jets, and the use of convex combinations to isolate specific paths. However, for deeper
networks with many blocks, manually expanding each layer becomes impractical. To address this,
we generalize this process into an algorithmic framework, which we develop next.
The jet-expand algorithm. Algorithm 1 presents the key operation of the framework. The
algorithm applies Lemma 1 to a residual transformation or to the decoding non-linearity for a given
(user-defined) set of centers C. It yields a set of expanded polynomial terms ξ, which can be seen
as a set-valued function ξ : Z × △N−1 → E , where E is an appropriate power set of functions,
and a non-linear remainder δ : Z × △N−1 → Rd. The remainder encompasses both the residu-
als stemming from Equation (6) and Lemma 1. As we showed above, centers can be the outputs
of previous expansions, enabling the propagation of the expansion through the entire network and
effectively ’unrolling’ the computation graph into distinct paths. Importantly, once we apply the
algorithm for l = L we obtain a way to rewrite the computational graph of q as a sum of ex-
panded terms (input-to-output paths), which we call expansion, and a non-linear remainder. Indeed,
if (ξL, δL) =jet expand(q, L, C, k) for some C and k, the following class of functional equiva-
lences holds:

q =
∑

e∈ξL
U e(·, w) + δL(·, w) for w ∈ △N−1. (11)

2For k = 0 the weights apply also to the center terms since J0id(x{1}+x{2}) = w1x{1}+w2x{2}+O(r1).

4

Preprint.

Algorithm 1 jet expand(q, l, C, k)

Require: Residual net q, block index l ∈ [L];
jet centers C = {xi}i∈[N]; order k ∈ N;

Ensure: ξ is a set of (partial) jet paths with
weights w ∈ △N−1 and δ is a reminder.

1: ξ ← {wiJ
kγl+1(xi)}i∈[N]

2: if l < L then
3: ξ ← ξ ∪ {wiJ

kid(xi)}i∈[N]

4: δ ← hl+1 −
∑

e∈ξ e

5: else δ ← γL+1 ◦ hL −
∑

e∈ξ e

Algorithm 2 exp jet expansion(q, k)

Require: Residual network q; order k ∈ N;
Ensure: ξ is a set of equally weighted input-to-

output jet paths, |ξ| = 2L, and δ is a re-
minder.

1: ξ ← {η, γ1 ◦ η}
2: for l ∈ [L] do
3: (ξ, δ)← jet expand(q, l, ξ, k)
4: ξ ← {e(·, 1/|ξ|)}e∈ξ

The runtime of Algorithm 1 is negligible as it operates at the level of the computational graph.
Evaluating ξ (and δ) at any z ∈ Z , instead, incurs a runtime complexity of O(|C|(F + kB)) where
F and B are the costs of a forward and a backward evaluation of q, respectively. In practice runtime
can be reduced by storing computation (Griewank & Walther, 2008; Bettencourt et al., 2019). In
next section we discuss how particular instantiations of our framework encompass previous studies
and let us seamlessly define novel objects of interest such as n-gram statistics of LLMs. Before that,
we conclude the section with two remarks regarding remainders and jet weights.

Remark 2 (Non-vanishing remainders). In general, we cannot expect reminders to vanish (as k
grows). Indeed, even if the convergence radius of the Taylor series is infinite, the arguments of
residuals introduced by applications of Lemma 1 do not vanish. If q is a linear residual network,
however, δ = 0 for k ≥ 1, showing that Algorithm 1 recovers (after reorganizing terms) the rewrite
of Equation (5) for every choice of w. 3 Hence, in light of Equation (11), jet expansions should be
seen as ways to rewrite computational graphs rather than approximations; in experiments we show
however how δ’s can be small and the cosine similarity between expansion and original network
logits can be close to 1; see Figure 3 (bottom).

Remark 3 (Jet weights optimization). So far we glossed over the role of the jet weights w’s. In
principle, these can be fixed, e.g. wi = 1/N . However, jet weights can also be optimized to
minimize the remainder at any given z, e.g. after projecting it into the logit space. Interesting, this
can be done cheaply as ∥UδL(z, w)∥2 = ∥γL(hL(z)) −

∑
e∈ξL

e(z, w)∥2UTU , which amounts to
the squared distance between the expansion and the original residual stream in the representation
space Rd with the metric induced by the unembedding matrix.

4 NOTABLE EXPANSIONS AND THEIR IMPLICATIONS

We introduce some particular expansions as application of the introduced jet expand algorithm,
setting the stage for the numerical case studies of the next section.

(Super)exponential expansion. Algorithm 2 generalizes the exponential expansion we performed
onto the two-blocks network in Section 3, using uniform jet weights. One can interpret the algorithm
as performing a “maximal” expansion (when remaining at the grain of the blocks) which yields 2L
input-to-output paths. In fact, for k ≥ 1, we can further isolate each degree of the expanded terms
into separate input-to-output paths that highlight interactions among various blocks. This further
refinement, which we will focus on in future work, may suggests that residual networks may in fact
behave as super-exponential ensembles of (shallower) functions.

Jet lenses and logit lens. The logit lens (nostalgebraist, 2021b; Geva et al., 2021; 2022; Merullo
et al., 2023; Belrose et al., 2023) is an interpretability method that consists in applying the decoder
to intermediate representations as follows:

LogitLensl(z) = Uγ(hl(z)) = J0υ(hl(z))(hL(z)).

The logit lens, aimed at highglighting the iterative refinement of the prediction across blocks, is
related to early exiting (or early decoding) in the context of conditional computation (see e.g. Panda

3Other special cases include expansions where each center set is a singleton and the convergence radius of
the expanded non-linearities is infinite.

5

Preprint.

et al., 2016; Elbayad et al., 2020; Geva et al., 2022). It is immediate to verify that LogitLensl
is equivalent to the expansion yielded by jet expand(q, L, {hl}, 0). This suggests two general-
izations, which we dub iterative and joint jet lenses, respectively. The iterative jet lens is a direct
extension of the logit lenses with higher order jets: jet expand(q, L, {hl}, k). The joint jet lenses
are expansions obtained through jet expand(q, L, {γl◦hl−1}l∈[L], k) that are aimed at highlight-
ing the residual contributions of each block non-linearity, rather than the iterative refinement of the
residual stream.

Jet bi-grams and skip-n-grams statistics. We consider transformer-based large language mod-
els with alternating self-attentions and MLPs, which are particular instances of residual nets. 4

Our framework allows us to directly extract n-gram statistics from an existing LLM without any
probing datasets. Concretely, we can systematically evaluate relevant jet paths (for small n’s)
on the entire input space, usually the vocabulary and its Cartesian products, independently from
individual contexts. For example, bi-grams statistics related to Pq(z2|z1, . . .) can be computed
by evaluating bi-gram paths, which we can obtain by expanding the LLM with Algorithm 2 and
filtering out all paths that involve self-attention modules. Specifically in our case studies (Sec-
tion 5), we focus on encoding-decoding bi-gram path, obtainable via expanding the LLM with
jet expand(q, L, {η}, k = 0), and the bi-gram paths involving up to one MLP module, which
can also be obtained via applying Algorithm 1 twice. We can obtain skip-n-gram statistics relating
to Pq(zn|zn−1, . . . , zn−2, . . . , z1, . . .), where dots indicate any number of interceding tokens, by
evaluating jet paths with self-attentions (the fewer self-attentions, the lower the n) and isolated sin-
gle query-key products. Such jet n-gram statistics offer a data-free tool to sketch LLMs via casting
them into (symbolic) n-gram databases. Thus they allows us to perform symbolic model diffing
between any two models that share a common vocabulary, as opposed to take differences in the
parameter space, harder to interpret and only possible for same-architecture models.

5 INTERPRETING LLMS WITH JET EXPANSIONS

Our framework provides users with freedom in terms of choosing the computational paths they
wish to focus on. Jet expansions support studies across various levels, including model-level global
analysis (jet n-grams), component-level analysis (jet paths), and example-level analysis (jet lens).
We experiment with several popular open-sourced large language models families: GPT-2 (Radford
et al., 2019), GPT-Neo Black et al. (2021), Llama (Touvron et al., 2023a;b; Rozière et al., 2024) and
OLMo (Groeneveld et al., 2024), showcasing the generality of the algorithm. Our main experiments
run on 128 CPU servers with 1 TB memory, while jet lens experiment run on a single laptop.

5.1 ANALYZING LLM INNER WORKING

LLMs are notorious for their lack of interpretability due to their inherent model complexity and size,
made worse by the usual opaque training process and unknown training data. Understanding their
inner working contributes to calibrating trust for users to use them appropriately. We showcase how
jet expansion along user-selected computational paths (jet paths) can help us discover and locate
learned associations akin to studies in mechanistic interpretability Templeton et al. (2024).

Jet lenses. We use jet lenses introduced in Section 4 to analyze LLM’s mechanism when process-
ing individual examples. Figure 3 (top) visualize a joint jet lens for GPT-Neo 2.7B (Black et al.,
2021) (other examples can be found in Appendix C). Here, a block contains one self-attention and
one MLP module. All table cells depict top-1 tokens for the corresponding path, following con-
ventions from prior work (Belrose et al., 2023). We observe that the joint jet lens captures the
synergy among different blocks, as the model prediction is decomposed into several jet paths. Our
preliminary analysis supports recent work on super-position (Elhage et al., 2022) and neuron pol-
ysemy (Bricken et al., 2023), suggesting that interactions among components may have ensemble
effects, which can broadly vary across model families. In this sense, the jet lenses with k > 0 may
serve as tools to systematically discover such synergic behaviors. We also find that higher-orders
(k > 0) help iterative lenses deliver more meaningful interpretations than the logit lens (k = 0) for
GPT-Neo-2.7B (see Figures 6 to 8). This is potentially due to their capability to trace indirect im-
pacts of early layers on the final logits, which were otherwise missing under logit lens. Our findings

4We disregard positional embeddings for simplicity and leave their study to future work.

6

Preprint.

new _simple _neural _architecture , _the _Trans former
Block 1 (7.36%) , (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) _ (5.23%) _network (6.91%) _for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) , (4.68%)
Block 4 (7.81%) _impover (1.62%) _unpop (1.29%) _impover (1.31%) _impover (1.28%) _impover (1.25%) _Neural (1.22%) former (1.20%) _Networks (1.32%)

Block 24 (6.02%) , (5.74%) _infographic (8.48%) _network (8.76%) _unve (8.45%) _unve (7.67%) _Neural (7.51%) former (7.39%) _model (8.45%)
Block 30 (6.24%) _â ¦" (5.29%) _ (1.31%) _network (1.30%) _for (1.29%) _which (1.29%) _neural (1.26%) former (1.25%) Â (1.31%)
Block 31 (7.76%) !!" (5.33%) _ (1.33%) _network (1.31%) _for (1.29%) _the (1.26%) _Conv (1.23%) former (1.23%) , (1.32%)
Block 32 (7.84%) â ¦." (3.56%) !?" (1.37%) _network (1.36%) , (1.33%) _and (1.28%) _neural (1.24%) former (1.25%) _model (1.32%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

0 1 2 3
Jet order (k)

0.85

0.90

0.95

1.00

Co
sin

e
sim

ila
rit

y

Joint jet lenses
GPT2; w=opt. (left) or k = 0 (right)
GPT2; w = avg. (left) or k = 1 (right)
GPT2-large; w=opt. (left) or k = 0 (right)
GPT2-large; w = avg. (left) or k = 1 (right)
GPT-Neo 2.7B; w=opt. (left) or k = 0 (right)
GPT-Neo 2.7B; w = avg. (left) or k = 1 (right) 0 10 20 30

Block index

0.85

0.90

0.95

1.00

Co
sin

e
sim

ila
rit

y

Iterative jet lenses

Figure 3: (Top) example of a joint jet lens on GPT-Neo 2.7B with k = 1, visualizing the seven blocks with
highest average jet weights after optimization. Each table cell indicates the most likely token of the jet path
related to each block non-linearity. Optimized jet weight are in brackets. We used a diverging blue-to-red color
map tracking logit scores, centered around zero. The bottom table shows the model logits and the expansion
logits, with cosine similarity in brackets; in this case, all top-1 tokens perfectly coincide. (Bottom) plots of
average cosine similarities between original and jet logits of joint (left) and iterative (right) lenses.

Table 1: MLPs in OLMo-7B and Llama-2-7B performing certain linguistic functions based on jet bi-grams
extracted from the corresponding jet paths.

OLMo-7B Llama-2-7B

MLP Index 1 3 9 17 19 6 7 18 19

Role -ly, - else -ing -’t - than -s -ing -es -ing,-ity -ly
∆ logit after intervention −4.19,−3.35 −0.58 −9.73 −4.26 −7.42 −14.61 −3.55 −9.69,−11.93 −9.14

are consistent with nostalgebraist (2021a); Cancedda (2024) where naive implementations of logit
lens are shown to fail on GPT-Neo model family. Figure 3 (bottom) present mean cosine similarities
of joint and iterative jet lenses for various GPT models and orders, averaged over 100 example sen-
tences. The similarities are high and close to 1 for various k, showing however different behavior
across model families and sizes. This indicates jet expansions highly correlate with model outputs,
potentially providing faithful interpretations.

Jet paths of individual components. By examining the representative jet bi-grams that are cap-
tured by each MLP path, we find some MLPs that perform special linguistic functions. For example,
in OLMo-7B, the jet path which passes through the 3rd MLP promotes the addition of the “-ing”
suffixes to the current token. Similar MLPs with certain linguistic functions are listed in Table 1.
Note that the relationship between functions and components are not necessarily one-to-one map-
pings. Particularly we find that the paths through multiple MLPs might work together to complete
one linguistic function e.g. MLP 6 and MLP 18 in Llama-2-7B can add “-ing” suffix. One MLP
might also do multiple linguistic jobs e.g. MLP 1 in OLMo 7B adding “-ly” and “- else” suf-
fixes. This echos work on circuit discovery (Conmy et al., 2023; Ferrando & Voita, 2024) and
superposition (Elhage et al., 2022), where the role of each component cannot be easily dissected
and multiple components collaborate to fulfill a function. Table 2 reports a role identification study
on attention heads in the first self-attention of OLMo-7B using jet tri-grams. Specifically, we find
heads associated with math and programming, e.g. head 1 on Math/Latex; heads promoting digits
and dash composition into dates, e.g. head 25; and heads constituting phrase templates, e.g. head
15 managing a “for x purposes”, where x is a placeholder. To verify the roles we revealed, we
further perform preliminary intervention experiments where we ablate MLPs or attention heads and
compute variations in model logits. After the interventions, the logits drop consistently in all cases,
suggesting our jet n-grams indeed can help identify certain roles for selected components. Varying
impact on logit differences is likely due to overdetermination (Mueller, 2024) and our partial selec-
tion of jet paths (e.g. for tri-grams we only selected encoding-attention-decoding paths, excluding
any MLP).

7

Preprint.

Table 2: Several attention heads in the first residual block of OLMo-7B and their roles identified with jet tri-
grams extracted from corresponding jet paths. We also include an example tri-gram captured by each head.

Head Index 2 16 26 30

Role Math/LaTeX “for . . . purposes” date composition “into account/consideration . . . ”
Example 3-gram (Lemma, let, s) (for, use, purposes) (20, 23, -) (into, account, possible)

∆logit after intervention −0.1570 −0.0019 −0.0093 −0.0001

0 100000 200000 300000 400000 500000
Pretraining Steps

2

3

4

5

6

7

8

9

10

Pr
et

ra
in

in
g

Lo
ss

Pretraining Loss

0.0

0.2

0.4

0.6

0.8

1.0

H
it

s
Ra

ti
o

@
1K

Hits Ratio @1K

(a) Top 1K jet bi-gram hit ratios w.r.t. the final step.

0 100000 200000 300000 400000 500000
Pretraining Steps

2

3

4

5

6

7

8

9

10

Pr
et

ra
in

in
g

Lo
ss

Pretraining Loss

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

To
ta

l M
as

s

Total Mass

(b) Top 1K jet bi-gram mass w.r.t. empirical data.

Figure 4: Analysis of OLMo-7B’s pretraining dynamics via measuring its jet bi-gram progression.

5.2 ANALYZING PRETRAINING DYNAMICS

Pretraining an LLM is usually extremely resource intensive. Therefore it is crucial to monitor the
progress of a pretraining run to prevent wasting of time and compute. In this section, we show how
jet bi-grams can serve as an effective signaling tool to trace the pretraining dynamics, providing
insights about the model’s maturity. Such signals are especially useful to understand what happens
with the model when the pretraining loss shows marginal improvements and fails to reflect the
changes inside the model.

Identifying the top bi-grams. To assess the model’s progression, we extracted jet bi-grams from
OLMo-7B model checkpoints across 555K pretraining steps. Table 4 presents a summary of the
top 10 jet bi-grams at different stages of training. Due to space reason, we only show the top 10
jet bi-grams every 100K steps. Initially, the network exhibits nonsensical jet bi-grams, such as
“ICUirling”. As training advances, it gradually learns more meaningful combinations, like “at
least”. This process of acquiring sensible bi-grams stabilizes around step 200K, indicating that
the model is reaching a level of maturity where the top 10 bi-grams capture common meaning.

Analyzing bi-grams learning speed. To evaluate the learning speed of these jet bi-grams, we
consider the jet bi-grams at the final training step (555K) as the ground-truth bi-grams. We then
chart the hit ratios of these ground-truth bi-grams at each pretraining step, as illustrated in Figure 4a.
Interestingly, even though the pretraining loss (the blue curve) shows only minor improvements after
the initial 50K steps, the model’s acquisition of effective bi-grams continues to progress in a steady,
consistent manner. This observation aligns with known phenomena in neural network training,
such as double-descent and grokking, which highlight the model’s ability to improve generalization
capabilities even when the loss appears to stagnate (Zhang et al., 2021; Power et al., 2022). In
addition, Figure 4b characterizes the total pseudo-joint probability mass of top 1K bi-grams from
empirical data (Liu et al., 2024). We derive a pseudo-joint jet bi-gram probability using statistical
uni-grams from (Liu et al., 2024). We observe that the model gradually accumulates probability
mass that aligns with the real corpus data distribution.

Learning schemes for different bi-grams. To understand if there are any differences between the
learning schemes of different bi-grams, we can trace the progression of the jet bi-gram scores for
selected bi-grams. Figure 5 provides a visual comparison of how different bi-grams are promoted
or suppressed during the pretraining process. The different slopes and levels of the lines indicate
varying rates of learning for the respective bi-grams. We observe that, the model first acquires ran-
dom bi-grams due to random parameter initialization. These random bi-grams, like “ICUirling”
and “VENT thanks”, are quickly suppressed in the early steps and never regain high scores. In
contrast, one-to-many bi-grams like “at least” are first promoted to very high scores but then
get suppressed perhaps due to the model seeing more of the scope of the token “at”. One-to-one

8

Preprint.

0 100000 200000 300000 400000 500000
Pretraining Steps

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Jet Bigram Score
ICUirling
VENT thanks
&
at least
make sure

Figure 5: Visualization of OLMo-7B’s promotion and suppression dynamics of jet bi-grams scores.
Table 3: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different methods: ToxiGen, jet bi-
grams, and RealToxicityPrompts challenge prompting. Higher numbers indicate higher toxicity scores on the
corresponding benchmarks and higher toxic knowledge possession for jet bi-grams.

ToxiGen Score Jet Bi-grams RTP Challenging Prompts

Hartvigsen et al. (2022) Mass of “toxic” bi-grams No Very mild Medium Hard

Llama-2-7B 21.25 0.03445 38% 49% 64% 88%
Llama-2-7B-chat 0.0 0.03377 23% 35% 64% 84%

bi-grams like “&” (HTML code) are gradually promoted and stabilize. Many-to-many bi-grams
like “make sure” takes the most time to learn and the scores are still increasing even at the end
of pretraining. Our findings suggest that the training process effectively promotes certain “good” bi-
grams, but at different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as targeted training
on more relevant bi-grams or adjusting the training data to improve the pretraining speed.

5.3 ANALYZING FINE-TUNING EFFECT

Fine-tuning is an important phase where the raw pretrained LLMs are guided to perform particular
tasks. We would like to understand how the model inner knowledge changes during fine-tuning pro-
cesses. While parameter diffing can be a straightforward solution, jet n-grams provides an alternative
approach, where the diffs are human readable and directly reflect the change of knowledge retained
by the LLMs. Such insights would allow us to better decide the mixture of data for fine-tuning, and
the number of steps for fine-tuning, which are currently a mix of heuristics and trial-and-error.

Code fine-tuning promotes coding-relevant bi-grams. We analyze the changes due to code fine-
tuning via diffing jet bi-grams extracted from Llama-2-7B and its fine-tuned versions, Codellama-7B
and Codellama-Python-7B. As highlighted in Table 5 with orange coloring, the jet bi-gram diff re-
veals coding-relevant keywords, such as “**kwargs”, “getters” and “Assertion”, suggest-
ing jet bi-gram can be a tool for verifying if fine-tuning is effective in acquiring relevant knowledge.

Does RLHF fine-tuning remove toxicity? We compare the original pretrained model, Llama-2-
7B, with its RLHF version, Llama-2-7B-Chat. RLHF alignment (Bai et al., 2022) is widely believed
to detoxify LLMs, as indicated by the ToxiGen scores (Hartvigsen et al., 2022). However, it re-
mains easy to prompt LLMs to bypass this alignment and produce toxic content. In Table 3, we
demonstrate this with dataset-based toxicity scores on a subset of challenging prompts in the Real-
ToxicityPrompts (RTP) dataset (Gehman et al., 2020): the gap in toxicity potential between the two
models narrows as we prepend to RTP prompts increasingly “explicit” (short) context. Specifically,
for hard context, Llama-2-7B-Chat shows an 84% probability of producing toxic content, close to
that of Llama-2-7B. This suggests that the RLHF model is not completely detoxified but rather hides
the toxicity knowledge from the “surface”, which however can be easily triggered by specific con-
texts. To quantify the toxicity knowledge embedded in these models, we use jet bi-gram probability
scores and calculate the cumulative conditional probability mass for a set of “toxic” bi-grams, which
are combinations of tokens associated with toxic meanings from a predefined list of keywords. In-
terestingly, we observe a small change in mass from 0.03445 to 0.03377 after RLHF. Thus, although
the ToxiGen score may suggest that the model has been effectively detoxified, the jet bi-gram mass

9

Preprint.

reflects retention of toxic knowledge after RLHF, aligning with the scores obtained by introducing
medium or hard explicit context and computing a toxicity score (via a second scorer model, (Hanu &
Unitary team, 2020)) on RealToxicityPrompts dataset (Gehman et al., 2020). This showcases a po-
tential application of jet bi-grams in constructing data-free indices that reveal embedded knowledge,
offering complimentary views beyond traditional data-driven benchmark evaluations.

6 RELATED WORK

Interpreting transformers. There has been much effort in interpreting the inner computations
of transformer models. In particular, mechanistic interpretability Ferrando et al. (2024), focuses
on reverse-engineering such computations by identifying, clustering and labelling model behavior
(Shah et al., 2024; Meng et al., 2022; Bricken et al., 2023) in human understandable terms and
attributing them with certain model components, e.g., MLPs Geva et al. (2021; 2022), or typical
“circuits” (Conmy et al., 2023; Ferrando & Voita, 2024). Authors discussed limitations of cur-
rents approaches to MI. For example, Templeton et al. (2024) found it generally hard to conclude
neuron-level intepretabilities, compared with feature representations; while Bolukbasi et al. (2021);
Goldowsky-Dill et al. (2023) points out that conclusions drawn are generally limited to the cho-
sen data distribution. As our approach focuses on manipulating functions, it does not require extra
datasets that are used for probe fitting in methods such as Belrose et al. (2023) nor sampling, as
needed in (Conmy et al., 2023; Ferrando & Voita, 2024; Voita et al., 2024). On a high level, al-
lowing taking any portion of compute out of the original transformer, jet expansions abstract and
generalize previous characterizations on the computational paths (Veit et al., 2016; Elhage et al.,
2021), where non-linear components with significant roles, e.g. layernorm and MLPs, are either ig-
nored or over-simplified for the ease of analysis. Additionally, zero ablations (or knock out) (Olsson
et al., 2022) and direct logits attributions (Wang et al., 2022) are linked to particular instantiations
of zeroth order jet expansions.

n-gram models. The early applications of n-gram models in languages dates back to (Shannon,
1948), where n-grams modeled the statistics of English. The n-gram based approaches have been
an important baseline in language processing, e.g., general language modelling (Goodman, 2001)
with applications like machine translation (Brants et al., 2007). There have been regained interests
on combining n-gram with neural network model-based approaches (e.g. Liu et al., 2024). Several
recent works have explored the relationships between LLMs and n-gram language models, such as
analyzing the representational capacity of transformers to simulate n-gram LMs (Svete & Cotterell,
2024) and measuring agreement between LLM predictions and n-gram rulesets (Nguyen, 2024).

Taylor expansion and jets Taylor expansions are popular tools in analyzing learning behaviours
(Jastrzebski et al., 2017), notably linearization (k = 1). For example, Belrose et al. (2024) applied
Taylor expansion on the loss function to demonstrate the learning preference of neural network
models. Xu et al. (2022) introduced a second-order Taylor expansion over the data distribution to
interpret optimal features. The generalized jet notions was introduced in machine learning in the
context automatic differentiation tools by Bettencourt et al. (2019), and is an experimental feature
in Jax (Bradbury et al., 2018), but has been studied before (see e.g. Griewank & Walther, 2008).

7 CONCLUSION AND DISCUSSION

We introduced jet expansion, a novel framework for expanding the computational graphs of neu-
ral networks. The method, which we specialize in this paper to deep residual nets, can be used
to disentangle contributions of user-selected computational paths from the overall graph. Comple-
mentary to other dataset-dependent methods in MI, our method enables various dataset-free global
interpretability studies, such as mapping computation to linguistic roles. We have validated jet ex-
pansions in terms of cosine similarity against model outputs and through interventional experiments
(Section 5.1). We applied our data-free method to transformer LMs, showing how we can sketch the
original model with input-output probability databases, extracting LM bi-and-tri-gram statistics.

Limitations. Although rooted in Taylor series theory, expansions obtained via our frameworks do
not (seek to) approximate the input function in any strict sense. Rather, our framework is amed at
facilitating interpretation of model behavior: we can use jet expansion to rewrite an input compu-
tational graph as a sum of “interpretable” polynomial terms and a (computable) remainder. How

10

Preprint.

large is a reminder and how expansions align with model outputs remains at the moment an em-
pirical question, implying that the jet order and weight optimization routines should generally be
considered as hyperparameters of the method. Furthermore, expansions are not unique (but higher
order expansions ”contain” lower order one). We leave a deeper investigation of these aspects to
future work. From a runtime standpoint, we note that even though graph manipulation is almost
immediate, systematic evaluation of jet paths may be time consuming (especially for k ≫ 0 and
when optimizing jet weights). If the input space is large, one may need to resort to sub-sampling or
search heuristics. Finally, we limited our study of n-gram expansions of LMs to bi-and-tri-grams,
unearthing compelling behaviors. This leaves the study of longer-context expansions to future work.
Implications and future work. Our work opens up several research directions. From a theoretical
standpoint, we will extend the expansion procedure to cover finer granularities, e.g. at neuron (sub-
space) levels; incorporate established attribution methods such as the Shapley value (Shapley et al.,
1953), including recent extensions to deal with probabilistic models (Franceschi et al., 2024); de-
velop concepts of (approximate) equivalence classes over models leveraging the jet spaces, which, in
turn, may further ground the model diffing procedure sketched in our case studies. Furthermore, we
will take inspiration from the numerous tools in linear algebra to provide further depth into the anal-
ysis, deepening the link to linear residual structures and establishing relations with Markov chains
and hidden Markov models, recently employed e.g. by Zhang et al. (2023) for constrained (struc-
tured) decoding. We plan to investigate the implication of the super-exponential number of paths
in the residual networks depth unearthed by Algorithm 2. From an applications standpoint, besides
studying jet n-grams for n > 3, we envision several fruitful applications in safety and transparency,
such as developing “search features” to systematically detect unwanted associations, or leaked pri-
vate content. Although our experiments are primarily observational, we speculate that jet expand
may also become an useful tool to guide interventions, supplementing other techniques like causal
tracing (Meng et al., 2022) and path patching (Goldowsky-Dill et al., 2023).

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Nora Belrose, Quintin Pope, Lucia Quirke, Alex Mallen, and Xiaoli Fern. Neural networks learn
statistics of increasing complexity. arXiv preprint arXiv:2402.04362, 2024.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation
for higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS
2019, 2019. URL https://openreview.net/forum?id=SkxEF3FNPH.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty Xiong,
Daniel Zhang, and Percy Liang. The foundation model transparency index. arXiv preprint
arXiv:2310.12941, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

11

https://openreview.net/forum?id=SkxEF3FNPH
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://github.com/google/jax
http://github.com/google/jax

Preprint.

Thorsten Brants, Ashok Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean. Large language models
in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pp. 858–867, 2007.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Nicola Cancedda. Spectral filters, dark signals, and attention sinks, 2024.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 16318–16352. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.

Charles Ehresmann. Les prolongements d’une variété différentiable: l’espace des jets d’ordre r de
vn dans vm. C. R. Acad. Sci. Paris, 233:777–779, 1951.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. ICLR,
2020.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy model/index.html.

Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language
models at scale. arXiv preprint arXiv:2403.00824, 2024.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Luca Franceschi, Michele Donini, Cédric Archambeau, and Matthias Seeger. Explaining probabilis-
tic models with distributional values. ICML, 2024.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxic-
ityPrompts: Evaluating neural toxic degeneration in language models. In Trevor Cohn, Yulan
He, and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 3356–3369, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.301. URL https://aclanthology.org/2020.
findings-emnlp.301.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2021.emnlp-main.446

Preprint.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 30–45, 2022.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Joshua T Goodman. A bit of progress in language modeling. Computer Speech & Language, 15(4):
403–434, 2001.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algo-
rithmic differentiation. SIAM, 2008.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Laura Hanu and Unitary team. Detoxify. Github. https://github.com/unitaryai/detoxify, 2020.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Ka-
mar. ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech
detection. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3309–3326, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.234. URL https://aclanthology.org/2022.
acl-long.234.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

S Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation MIT-Press,
1997.

Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-
gram: Scaling unbounded n-gram language models to a trillion tokens. arXiv preprint
arXiv:2401.17377, 2024.

Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic. arXiv e-prints, pp. arXiv–2305, 2023.

Aaron Mueller. Missed causes and ambiguous effects: Counterfactuals pose challenges for inter-
preting neural networks. arXiv preprint arXiv:2407.04690, 2024.

Timothy Nguyen. Understanding transformers via n-gram statistics. arXiv preprint
arXiv:2407.12034, 2024.

nostalgebraist. logit lens on non-gpt2 models + extensions, 2021a. URL https://colab.
research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA.

nostalgebraist. interpreting gpt: the logit lens, 2021b. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#
HEf5abD7hqqAY2GSQ.

13

https://aclanthology.org/2022.acl-long.234
https://aclanthology.org/2022.acl-long.234
https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA
https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ

Preprint.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In 2016 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 475–480, 2016.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Harshay Shah, Andrew Ilyas, and Aleksander Madry. Decomposing and editing predictions by
modeling model computation. arXiv preprint arXiv:2404.11534, 2024.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Lloyd S Shapley et al. A value for n-person games. 1953.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. arXiv preprint
arXiv:2404.14994, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 1288–1301, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.findings-acl.75.

14

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://aclanthology.org/2024.findings-acl.75
https://aclanthology.org/2024.findings-acl.75

Preprint.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Xiangxiang Xu, Shao-Lun Huang, Lizhong Zheng, and Gregory W Wornell. An information theo-
retic interpretation to deep neural networks. Entropy, 24(1):135, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-
toregressive language generation. In International Conference on Machine Learning, pp. 40932–
40945. PMLR, 2023.

15

Preprint.

A ADDITIONAL DETAILS ON JETS

A jet of a function represents an equivalence class. We thus can perform algebraic operations among
functional equivalence classes using jet algebra stated below.

Proposition 1 (Jet algebra). Let f, g ∈ C∞(Rd,Rd) and k ∈ N+. Then,

(i) Jk(af + bg)(x) = a Jk(f)(x) + b Jk(g)(x), for a, b ∈ R (linearity);

(ii) Jkf(x) ◦ g ∈ Jkf(x) and Jkf(x) ◦ g(y) = Jkf(x)(g(y)) (jet after endomorphisms);

(iii) g ◦ Jkf(x) = {g ◦ u : u ∈ Jkf(x)} (endomorphism after jet);

(iv) Jk(f ◦ g)(x) = Jkf(g(x)) ◦ Jkg(x) (composition of jets);

Properties (i)-(iii) follow directly from the definition; (iv) is a consequence of the chain rule and
truncation.

Proof of Lemma 1 Take y ∈ Rd, N ≥ 1, xi ∈ Rd for i ∈ [N], w ∈ △N−1 and an order k ≥ 0.
Since w belongs to the simplex△N−1, we have

∑N
i=1 wi = 1. Multiplying f(y) on both hands, we

obtain

f(y) =

N∑
i=1

wif(y) =

N∑
i=1

wi

[
f(xi) +

k∑
s=1

Dsf(xi)(y − xi)
⊗s +O(∥y − xi∥k+1)

]

=

N∑
i=1

wiJ
kf(xi)(y) +O(wi∥y − xi∥k+1),

by applying Equation (6) (Taylor expansion) and the definition of jet with each xi as the center. At
the same time, we can expand f(y) with

∑N
i=1 xi as the center

f(y) = Jkf(

N∑
i=1

xi)(y) +O(∥y −
∑

xi∥k+1).

Now let us take y =
∑N

i=1 xi and observe that O(∥y −
∑

xi∥k+1) = 0 and O(wi∥y − xi∥k+1) =
O(wi∥xi −

∑
j xj∥k+1). Finally we observe that the class of functions in the last O are dominated

by the class of function in O(rk+1) where r = maxi{wi∥xi−
∑

j xj∥} is the maximum remainder.
This concludes the proof.

As a side note, jet weights would not need to form convex combinations, but rather linear combina-
tions

∑
i wi = 1. However, restricting to convex combinations has two major advantages:

• optimizing over a convex set guarantees the existence of maxima and minima (Weierstrass
theorem) and uniqueness of minima if we are optimizing a strictly convex loss as in general
is the case for expansions that only affect the decoder module.

• weights within the probability simplex have a clearer interpretation for interpretability pur-
poses.

B ADDITIONAL TABLES FOR JET BI-GRAMS

See Table 4 and Table 5.

C ADDITIONAL PLOTS OF JET LENSES

See plots below, referring to the main paper for details. Note that for iterative lenses the last block
coincides with the model logits for all k by design. We omit the iterative lens for GPT2-large for
k = 2 due to low cosine similarity.

16

Preprint.

Table 4: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct step, while
each row corresponds to a different rank. The table entries are the bi-grams at each step for each rank. The
number of tokens seen in association with the pretraining steps is also annotated. The model gradually picks
up meaningful bi-grams after starting from senseless bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
0B [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least & & &
1 ICUirling at least ’s at least its own its own
2 ords architect its own & its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal条 iums iums more than his own your own
6 Charg@{ you’re you’re can’t 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant ’my more than make sure can’t iums

Table 5: The bi-grams before and after coding-finetuning. For space reason, we only show the bi-grams at
every 50 ranks among the top 1000 bi-grams. We highlight the bi-grams that are relevant to coding, such as
“**kwargs” a keyword in python programming. This demonstrate that our method has the capability to extract
representative bi-grams that reflect fine-tuning quality.

Rank LLAMA2-7B CodeLLAMA-7B CodeLLAMA-Python-7B

0 (more, than) (like, wise) (like, wise)
50 (Now, here) (just, ification) (Like, wise)
100 (system, atically) (in, case) (all, udes)
150 (all, erg) (get, ters) (no, isy)
200 (on, ions) (któber, s) (output, ted)
300 (other, world) (all, ud) (Object, ive)
350 (Just, ified) (gebiet, s) (as, cii)
400 (trust, ees) (Protest, s) (can, nab)
450 (at, he) (deploy, ment) (transport, ation)
500 (book, mark) (Class, room) (Tag, ging)
550 (from, 而) (access, ory) (personal, ized)
600 (WHEN, ever) (In, variant) (excess, ive)
650 (where, about) (I, am) (Add, itional)
700 (ag, ged) (add, itionally) (**, kwargs)
750 (he, he) (invalid, ate) (name, plates)
800 (all, anto) (div, ision) (select, ive)
850 (Tom, orrow) (process, ors) (Assert, ions)
900 (for, ays) (Program, me) (blog, ger)
950 (Bach, elor) (set, up) (can, cellation)

new _simple _neural _architecture , _the _Trans former
Block 1 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 2 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 3 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 4 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 5 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 6 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 7 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 8 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 9 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters

Block 10 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 11 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 12 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 13 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 14 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 15 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 16 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 17 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 18 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 19 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 20 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 21 Supporters Supporters Supporters Supporters Engineers Supporters Supporters Supporters
Block 22 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Introduced
Block 23 Supporters Supporters Supporters Supporters Introduced Supporters Supporters Introduced
Block 24 Supporters Supporters Supporters Supporters Nonetheless Nonetheless Supporters Introduced
Block 25 Supporters Supporters Supporters Supporters Attempts Nonetheless Supporters Introduced
Block 26 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 27 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 28 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 29 foreseen Supporters Supporters Supporters foreseen Nonetheless Charges Introduced
Block 30 foreseen Supporters Supporters Attempts foreseen foreseen Charges Introduced
Block 31 Supporters Supporters Supporters _for _the aminer former ,
Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 6: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b), applied over GPT-Neo-2.7B
with the input sentence “new simple neural architecture, the Transformer”.

17

Preprint.

new _simple _neural _architecture , _the _Trans former
Block 1 , ton _network _for _which _first former ,
Block 2 Supporters ton _network _for _which _first former ,
Block 3 Supporters ton _network _for _which _first former ,
Block 4 Supporters ton _network _for _which _first former ,
Block 5 Supporters ton _network _for _which _first former ,
Block 6 Supporters ton _network _for _which _first former ,
Block 7 Supporters ton _network _for _which _first former ,
Block 8 Supporters ton _network _for _which _first former ,
Block 9 Supporters ton _network _for _which _first former ,

Block 10 Supporters ton _network _for _which _first former ,
Block 11 Supporters ton _network _for _which _first former ,
Block 12 Supporters ton _network _for _which _first former ,
Block 13 Supporters ton _network _for _which _first former ,
Block 14 Supporters ton _network _for _which _first former ,
Block 15 Supporters ton _network _for _which _first former ,
Block 16 Supporters ton _network _for _which _first former ,
Block 17 Supporters ton _network _for _which _first former ,
Block 18 Supporters ton _network _for _which _first former ,
Block 19 Supporters ton _network _for _which _first former ,
Block 20 Supporters ton _network _for _which _first former ,
Block 21 Supporters ton _network _for _which _first former ,
Block 22 Supporters ton _network _for _which _first former ,
Block 23 Supporters ton _network _for _which _first former ,
Block 24 Supporters ton _network _for _which _so former ,
Block 25 Supporters ton _network _for _which _first former ,
Block 26 Supporters ton _network _for _which _first former ,
Block 27 Supporters ton _network _for _which _first former ,
Block 28 Supporters ton _network _for _which _first former ,
Block 29 foreseen ton _network _for _which _first former ,
Block 30 foreseen ton _network _for _which _first former ,
Block 31 Supporters _ _network _for _which _first former ,
Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 7: Iterative jet lens (k = 1), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 _the _ _nets !: _â ¦" _â ¦" former !:
Block 2 _the _ _network _outper _â ¦" _â ¦" former _[
Block 3 _the _ _network _for _trained _Conv former _[
Block 4 _the _ _network _for _the _Conv former ,
Block 5 _the _ _network _for _the _neural former ,
Block 6 _the _ _network _for _the _neural former ,
Block 7 _the _ _network _for _the _architecture former ,
Block 8 _the _ _network _for _the _architecture former ,
Block 9 _the _ _network _for _the _architecture former ,

Block 10 _the _ _network _for _the _architecture former ,
Block 11 _the _ _network _for _the _architecture former ,
Block 12 _the _ _network _for _the _architecture former ,
Block 13 _the _ _network _for _the _architecture former ,
Block 14 _the _ _network _for _the _neural former ,
Block 15 _the _ _network _for _the _neural former ,
Block 16 _the _ _network _for _the _neural former ,
Block 17 _the _ _network _for _the _neural former ,
Block 18 _the _ _network _for _the _neural former ,
Block 19 _the _ _network _for _the _neural former ,
Block 20 _the _ _network _for _the _neural former ,
Block 21 _the _ _network _for _the _neural former ,
Block 22 _the _ _network _for _the _neural former ,
Block 23 _the _ _network _for _the _neural former ,
Block 24 _the _ _network _for _the _neural former ,
Block 25 _the _ _network _for _the _neural former ,
Block 26 _the _ _network _for _the _neural former ,
Block 27 _the _ _network _for _the _neural former ,
Block 28 _the _ _network _for _the _neural former ,
Block 29 _the _ _network _for _the _neural former ,
Block 30 _the _ _network _for _and _neural former ,
Block 31 , _ _network _for _and _neural former ,
Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 8: Iterative jet lens (k = 2), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”

18

Preprint.

new _simple _neural _architecture , _the _Trans former
Block 1 bie _simple _neural _architecture _and _the fig former
Block 2 bie _simple _neural _architecture _and _main ient former
Block 3 bie _simple _neural _architecture _and _new ient former
Block 4 bie _way _neural _architecture _and _first ient _titan
Block 5 bie _way _networks _architecture _and _next ient _Prime
Block 6 bie _enough _networks _architecture _and _next ient _Matrix
Block 7 _href _enough _networks _architecture _and _first ient _Prime
Block 8 _iTunes _enough _neural _architecture _which _first ient _Revolution
Block 9 , _enough _neural _architecture _which _first ient _Prime

Block 10 , _enough _network _architecture _which _first ient _Revolution
Block 11 , _enough _network _model _which _only ient _Pro
Block 12 , _enough _network _architecture _which _only ient _Pro
Block 13 , _enough _network _model _which _first ient _Pro
Block 14 , _enough _network _model _which _first ient _Pro
Block 15 , _enough _network _model _which _only ient _Pro
Block 16 , - _network _model _which _only ient _Revolution
Block 17 , - _system _model _which _only ient _Prime
Block 18 , - _system _model _which _only ient _Prime
Block 19 , - _system _model _which _only ient _Prime
Block 20 , - _system _model _which _only ient _Prime
Block 21 , - _system _model _which _only ient _Prime
Block 22 , - _network _model _which _only ient _Prime
Block 23 , ton _network _model _which _only ient _Prime
Block 24 , ton _network _model _which _only ient _Prime
Block 25 , ton _network _model _which _first ient _Prime
Block 26 , ton _network _model _which _only ient _Prime
Block 27 , ton _network _for _which _first ient _Prime
Block 28 , - _network " _which _only ient _Prime
Block 29 , - _network " _which _neural ient _Prime
Block 30 , " _network " _which _neural ient ,
Block 31 , " _network " _which _neural ient ,
Block 32 , " _network " _which _neural ient ,
Block 33 , " _network _for _which _neural ient ,
Block 34 , " _network ' _which _neural ient ,
Block 35 , " _network ' _which _neural c ,
Block 36 _ " _network ' _which _neural c ,

Logits _ " _network ' _which _neural c ,

Figure 9: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b), applied over GPT-2-large
with the input sentence “new simple neural architecture, the Transformer”.

new _simple _neural _architecture , _the _Trans former
Block 1 bie " _network " _which _neural c _is
Block 2 bie " _network ' _which _neural c _is
Block 3 bie " _network ' _which _neural c _is
Block 4 _ " _network ' _which _neural c _is
Block 5 _ " _network ' _which _neural c _is
Block 6 _ " _network ' _which _neural c _is
Block 7 _ " _network ' _which _neural c _is
Block 8 _ " _network ' _which _neural c _is
Block 9 _ " _network ' _which _neural c _is

Block 10 , " _network ' _which _neural c _is
Block 11 , " _network ' _which _neural c _is
Block 12 , " _network ' _which _neural c ,
Block 13 , " _network ' _where _neural c ,
Block 14 , " _network ' _and _neural c ,
Block 15 , " _network ' _and _neural c ,
Block 16 , " _network ' _and _neural c ,
Block 17 , " _network ' _and _neural c ,
Block 18 , " _network ' _and _neural c ,
Block 19 , " _network ' _and _neural c ,
Block 20 , " _network ' _and _neural c ,
Block 21 , " _network ' _and _neural c ,
Block 22 , " _network ' _and _neural c ,
Block 23 , " _network ' _the _neural c ,
Block 24 , " _network ' _and _neural c ,
Block 25 , " _network ' _and _neural c ,
Block 26 , " _network ' _and _neural c ,
Block 27 , " _network ' _and _neural c ,
Block 28 , " _network ' _and _neural c ,
Block 29 , " _network ' _and _human c ,
Block 30 , " _network ' _and _same c ,
Block 31 , " _network ' _and _same c ,
Block 32 , " _network ' _and _same c ,
Block 33 , " _network ' _and _neural c ,
Block 34 , " _network ' _which _neural c ,
Block 35 - " _network ' _which _neural c ,
Block 36 _ " _network ' _which _neural c ,

Logits _ " _network ' _which _neural c ,

Figure 10: Iterative jet lens (k = 1), applied over GPT-2-large with the input sentence “new simple neural
architecture, the Transformer”

19

Preprint.

new _simple _neural _architecture , _the _Trans former
Block 1 (4.40%) , (6.62%) _simple (3.91%) _neural (4.42%) _architecture (3.97%) _which (4.07%) _same (4.37%) cend (3.93%) former (3.91%)
Block 2 (4.15%) , (6.59%) _retro (3.85%) _prog (4.32%) _error (3.74%) _including (3.93%) _resulting (4.14%) ference (3.69%) _Robo (2.99%)
Block 3 (4.23%) , (6.59%) ove (4.13%) _Matter (4.12%) killer (3.51%) _which (4.00%) _AVG (4.01%) em (3.56%) Mars (3.91%)
Block 4 (4.11%) _the (6.59%) _reg (3.51%) lect (4.37%) OX (3.68%) _found (4.05%) netflix (4.09%) Charge (2.95%) Â® (3.69%)
Block 5 (6.11%) , (6.59%) ware (3.54%) _product (3.68%) _towards (3.70%) _evolution (3.88%) _ones (3.74%) it (20.20%) _Mant (3.57%)
Block 6 (3.91%) , (6.58%) ies (3.59%) _networks (4.11%) _developed (3.45%) _developed (3.55%) _Mehran (3.45%) ition (3.54%) bur (3.01%)
Block 7 (4.00%) , (6.56%) face (3.75%) _studies (3.88%) _based (3.52%) _hackers (3.76%) _Turing (3.73%) _Series (2.97%) _Suite (3.83%)
Block 8 (4.06%) , (6.42%) key (3.83%) _model (4.18%) _based (3.53%) _requiring (3.49%) _algorithm (4.14%) ient (3.62%) _II (3.25%)
Block 9 (4.09%) , (7.45%) _clutter (4.08%) _model (3.69%) _test (3.40%) _which (3.11%) _neural (3.55%) verse (3.82%) _Cube (3.66%)

Block 10 (10.50%) . (16.50%) lists (9.61%) g (4.99%) _of (16.60%) _which (11.47%) _neural (5.79%) _neural (3.50%) _is (15.56%)
Block 11 (25.30%) , (16.96%) " (27.59%) _networks (28.89%) " (24.52%) _the (26.92%) _new (29.14%) m (22.95%) _neural (25.40%)
Block 12 (25.13%) , (6.56%) . (28.62%) _net (29.35%) , (26.40%) _the (27.77%) _the (29.85%) c (25.27%) . (27.23%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) , - _network _of _which _" - _is

Figure 11: Joint jet lens with learnable weightings (k = 0), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (15.30%) . (7.49%) " (16.78%) _networks (16.96%) ", (18.37%) _neural (14.61%) _neural (14.05%) verse (16.45%) _Neural (17.73%)

Block 2 (4.57%) , (13.81%) json (3.21%) _networks (3.29%) _model (3.46%) _which (3.11%) _neural (3.02%) cend (3.23%) _Neural (3.45%)
Block 3 (4.49%) , (14.25%) tons (3.25%) _networks (2.82%) _architecture (3.32%) _neural (3.10%) _neural (3.00%) porter (3.03%) _Neural (3.17%)
Block 4 (4.10%) . (11.55%) tons (3.28%) _networks (3.27%) _leveraging (3.19%) _synt (3.04%) _neural (2.98%) verse (2.90%) _Neural (2.57%)
Block 5 (4.02%) . (9.58%) tons (3.05%) _networks (3.25%) _algorithm (3.45%) _which (3.14%) _neural (2.99%) mitter (3.24%) _Neural (3.47%)
Block 6 (3.02%) . (2.75%) _linkage (2.65%) _net (3.04%) _algorithms (3.26%) _detecting (2.94%) _neural (2.80%) cend (3.30%) _Neural (3.45%)
Block 7 (2.91%) . (2.98%) _teleportation (2.78%) _nets (3.19%) _approach (3.24%) _specifically (2.49%) _cortex (2.58%) genic (3.07%) _Cortex (2.95%)
Block 8 (4.60%) bid (3.10%) nex (7.64%) _network (2.63%) _platform (2.62%) _neural (4.81%) _participant (9.06%) cription (3.50%) _Neural (3.45%)
Block 9 (7.44%) iaries (3.10%) url (5.60%) _networks (7.77%) _intelligence (4.86%) _Torch (14.64%) _welcoming (13.48%) Secure (7.21%) _conv (2.83%)

Block 10 (15.04%) akings (13.99%) widget (14.80%) _network (16.20%) _None (13.05%) _Bund (15.37%) _safest (14.72%) cend (16.11%) _disabling (16.06%)
Block 11 (16.50%) ity (3.19%) ton (18.47%) _network (18.79%) _architecture (20.49%) _which (16.34%) _neural (15.62%) istor (18.84%) â ¢ (20.28%)
Block 12 (18.00%) , (14.21%) - (18.49%) _network (18.78%) _that (20.68%) _which (16.41%) _neural (15.70%) ient (19.11%) _is (20.60%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) akings json _networks _framework _neural _neural cend _Neural

Figure 12: Joint jet lens with learnable weightings (k = 1), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.58%) Supporters (1.55%) Supporters (3.24%) Supporters (3.46%) Supporters (5.37%) Supporters (5.08%) Supporters (3.52%) Supporters (3.88%) Supporters (2.56%)
Block 2 (2.13%) foreseen (1.61%) foreseen (2.97%) foreseen (1.15%) Introduced (3.96%) foreseen (1.09%) foreseen (1.54%) Supporters (3.67%) Supporters (1.03%)
Block 3 (2.07%) Amid (1.65%) Supporters (2.01%) Across (1.32%) gewater (1.14%) Supporters (3.66%) Supporters (2.93%) Supporters (2.58%) leground (1.28%)
Block 4 (1.57%) _impover (1.97%) _unpop (2.18%) _unpop (1.46%) _impover (1.33%) _impover (1.39%) _impover (1.71%) _uphe (1.27%) _impover (1.27%)
Block 5 (1.47%) Attempts (1.76%) _municip (2.15%) _airst (1.45%) _linem (1.29%) amiliar (1.32%) pelling (1.38%) rieving (1.26%) _linem (1.13%)
Block 6 (1.45%) Residents (1.76%) _athlet (2.17%) rha (1.44%) _twent (1.34%) _way (1.05%) ters (1.40%) rha (1.23%) _Xuan (1.25%)
Block 7 (3.57%) Ironically (1.63%) celona (2.74%) wrap (3.78%) _look (5.71%) _airstrike (1.22%) _equivalent (2.63%) _different (6.30%) _hollow (4.58%)
Block 8 (4.63%) Supporters (1.61%) imura (3.91%) vantage (3.03%) anoia (5.48%) foreseen (6.13%) ileen (4.55%) Enlarge (5.70%) assador (6.59%)
Block 9 (3.14%) Ironically (1.65%) erguson (2.00%) certain (2.53%) OUR (1.28%) _local (3.54%) erguson (1.80%) enter (5.43%) bec (6.89%)

Block 10 (1.73%) foreseen (1.65%) foreseen (2.01%) Engineers (1.20%) Engineers (2.88%) asury (1.19%) thinkable (1.40%) Attempts (2.53%) uddenly (0.96%)
Block 11 (1.71%) likely (1.57%) extremely (1.88%) aples (1.18%) _screenplay (1.29%) earances (1.30%) earances (4.13%) oother (1.20%) _resurg (1.12%)
Block 12 (4.53%) Ironically (1.73%) Phones (3.91%) ADVERTISEMENT (4.39%) ADVERTISEMENT (6.03%) isively (4.65%) _Blvd (4.46%) ADVERTISEMENT (6.08%) ADVERTISEMENT (4.99%)
Block 13 (2.80%) _a (1.68%) aji (2.83%) imbabwe (1.33%) rone (1.28%) OTOS (5.38%) ppard (3.08%) ppard (1.07%) aji (5.76%)
Block 14 (2.91%) foreseen (1.66%) ADVERTISEMENT (1.83%) Marginal (3.82%) chell (1.32%) _Appalach (1.33%) _Caucasus (4.66%) _still (5.47%) , (3.23%)
Block 15 (1.47%) ormons (1.78%) _confir (1.89%) uring (1.34%) ured (1.25%) _AoE (1.38%) _Caucas (1.68%) _lineman (1.25%) _topple (1.22%)
Block 16 (3.98%) Against (1.82%) folios (1.93%) @ (6.49%) thinkable (3.49%) _tsun (1.26%) _D (4.65%) l (5.84%) arsh (6.38%)
Block 17 (2.89%) urses (1.38%) untled (4.46%) ortunate (3.72%) ithub (1.21%) _our (4.69%) ortment (1.51%) erenn (4.91%) ombies (1.21%)
Block 18 (5.12%) foreseen (1.63%) Supporters (4.53%) Nonetheless (6.62%) Ironically (5.07%) Thankfully (5.66%) Shortly (4.52%) af (5.80%) _is (7.12%)
Block 19 (2.96%) pherd (1.47%) _enough (4.91%) ag (3.58%) _for (5.69%) incerity (1.08%) incerity (2.75%) extreme (3.01%) phabet (1.21%)
Block 20 (5.68%) (2.06%) (5.07%) _just (7.05%) (6.91%) Attempts (6.51%) paralleled (4.49%) - (6.53%) , (6.87%)
Block 21 (1.46%) ription (1.60%) ription (2.15%) _Playoffs (1.48%) isdom (1.06%) _frontrunner (1.36%) _frontrunner (1.69%) _TBD (1.24%) pered (1.06%)
Block 22 (4.55%) _in (3.36%) _first (5.29%) _two (7.06%) _one (6.98%) _which (6.97%) _one (4.56%) _isEnabled (1.03%) elligence (1.15%)
Block 23 (5.21%) , (4.80%))] (5.23%) _" (7.13%)) (6.26%) _while (6.31%) _point (4.57%) albeit (1.15%) B (6.21%)
Block 24 (6.13%) _a (5.62%) _m (5.26%) _first (7.18%) _for (7.33%) _the (7.33%) _so (4.70%) _trans (5.70%) rieving (5.90%)
Block 25 (1.55%) foreseen (1.67%) acly (2.14%) _enthus (1.49%) _anecd (1.35%) _trainers (1.43%) _subreddits (1.74%) ithub (1.28%) _Trainer (1.27%)
Block 26 (2.61%) - (6.25%) _simple (2.08%) _simple (5.95%) ername (1.30%) haar (1.34%) _satell (1.74%) igsaw (1.02%) _headphone (1.17%)
Block 27 (2.65%) _â (7.40%) _â (5.48%) _DSM (1.35%) heid (1.30%) dayName (1.38%) _artif (1.75%) --+ (1.27%) _nostalg (1.30%)
Block 28 (2.39%) _fps (8.56%) >>\ (2.30%) _Oo (1.42%) _tacos (1.30%) _msec (1.41%) _unbeliev (1.75%) _hrs (1.12%) _reminis (1.28%)
Block 29 (1.97%) _â ¦" (5.17%) _convol (2.18%) ricanes (1.47%) _Gujar (1.25%) acerb (1.38%) cffff (1.74%) _negoti (1.28%) _automakers (1.27%)
Block 30 (1.84%) _â ¦" (4.01%) _anecd (2.24%) _unve (1.49%) _overwhel (1.37%) !?" (1.43%) 20439 (1.78%) _negoti (1.29%) _calculates (1.12%)
Block 31 (4.61%) !!" (8.40%) _â ¦" (2.57%) _greets (1.35%) _entert (1.80%) \\\\ (4.44%) \\\\ (6.14%) "! (5.27%) '/ (6.88%)
Block 32 (5.64%) â ¦." (9.55%) !?" (4.42%) â ¦." (2.29%) â ¦." (5.37%) _â ¦" (6.35%) _\' (9.03%) ©¶æ¥µ (3.34%) â ¦." (4.75%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.977) _the _and - _for _the _first - ,

Figure 13: Joint jet lens with learnable weightings (k = 0), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

20

Preprint.

new _simple _neural _architecture , _the _Trans former
Block 1 (7.36%) , (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) _ (5.23%) _network (6.91%) _for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) , (4.68%)
Block 3 (1.31%) _File (1.62%) _ (1.29%) _network (1.31%) _for (1.28%) _which (1.25%) _CNN (1.22%) former (1.20%) , (1.32%)
Block 4 (7.81%) _impover (5.74%) _unpop (8.48%) _impover (8.76%) _impover (8.45%) _impover (7.67%) _Neural (7.51%) former (7.39%) _Networks (8.45%)
Block 5 (1.79%) User (5.29%) _ (1.31%) _network (1.30%) _for (1.29%) _which (1.29%) _neural (1.26%) former (1.25%) , (1.31%)
Block 6 (1.79%) Instance (5.33%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.26%) _neural (1.23%) former (1.23%) , (1.32%)
Block 7 (1.59%) File (3.56%) _ (1.37%) _network (1.36%) _for (1.33%) _which (1.28%) _neural (1.24%) former (1.25%) , (1.32%)
Block 8 (1.70%) Supporters (5.02%) _ (1.29%) _network (1.28%) _for (1.25%) _which (1.24%) _Neural (1.17%) former (1.12%) , (1.21%)
Block 9 (1.77%) Enlarge (5.04%) _ (1.37%) _network (1.37%) _for (1.32%) _which (1.26%) _neural (1.23%) former (1.25%) , (1.31%)

Block 10 (4.41%) foreseen (5.36%) _ (5.77%) _network (6.19%) _for (5.99%) _which (1.15%) _neural (0.93%) former (2.45%) , (7.42%)
Block 11 (1.31%) , (1.90%) _ (1.30%) _network (1.29%) _for (1.20%) _which (1.18%) _neural (1.19%) former (1.19%) , (1.24%)
Block 12 (1.21%) , (1.74%) _ (1.11%) _network (1.17%) _for (1.10%) _which (1.16%) _neural (1.15%) former (1.07%) , (1.21%)
Block 13 (1.37%) _ (1.94%) _ (1.36%) _network (1.35%) _for (1.32%) _which (1.23%) _neural (1.21%) former (1.23%) , (1.32%)
Block 14 (1.22%) , (1.82%) _ (1.18%) _network (1.22%) _for (1.12%) _which (1.15%) _neural (1.09%) former (1.04%) , (1.12%)
Block 15 (1.34%) _ (1.90%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.21%) _neural (1.20%) former (1.20%) , (1.28%)
Block 16 (1.31%) ((1.91%) _ (1.28%) _network (1.28%) _for (1.24%) _which (1.18%) _neural (1.19%) former (1.18%) _model (1.23%)
Block 17 (1.31%) _ (1.90%) _ (1.29%) _network (1.28%) _for (1.26%) _which (1.14%) _neural (1.12%) former (1.16%) , (1.29%)
Block 18 (4.55%) , (1.65%) _ (5.16%) _network (3.55%) _for (5.49%) _which (6.28%) _neural (6.05%) former (5.05%) , (3.17%)
Block 19 (1.24%) , (1.84%) _ (1.23%) _network (1.17%) _for (1.18%) _which (1.23%) _neural (0.97%) former (1.10%) _model (1.18%)
Block 20 (3.30%) (1.84%) _ (2.30%) _network (1.16%) _for (4.21%) _which (6.29%) _neural (5.89%) former (2.70%) _architecture (2.00%)
Block 21 (1.87%) _ (1.80%) _ (1.21%) _network (1.12%) _for (1.15%) _which (3.82%) _neural (3.71%) former (1.10%) , (1.02%)
Block 22 (4.81%) - (1.91%) _infographic (8.14%) _network (3.50%) _outper (5.92%) _which (6.89%) _neural (6.76%) former (1.57%) _[(3.83%)
Block 23 (2.01%) , (1.91%) _ (1.14%) _network (1.40%) _learns (1.38%) _which (3.94%) _Conv (3.99%) former (1.14%) _model (1.18%)
Block 24 (6.02%) , (1.94%) _infographic (8.04%) _network (7.20%) _unve (8.00%) _unve (7.47%) _Neural (7.02%) former (3.53%) _model (4.98%)
Block 25 (1.19%) _ (1.87%) _ (1.19%) _network (1.09%) _for (1.22%) _which (0.96%) _â (1.07%) former (1.06%) , (1.04%)
Block 26 (1.55%) _ (1.89%) _ (1.18%) _network (2.18%) _called (1.22%) _which (1.25%) _Conv (1.09%) former (2.57%) , (1.06%)
Block 27 (2.23%) _ (1.93%) ton (3.53%) _network (1.09%) _for (1.21%) _which (0.99%) _model (1.13%) former (6.67%) , (1.25%)
Block 28 (2.76%) _ (1.73%) json (1.02%) _network (3.49%) _for (1.84%) _which (0.95%) _Neural (3.31%) former (6.31%) , (3.42%)
Block 29 (3.22%) _â ¦" (6.01%) _ (1.32%) _network (1.00%) _for (1.01%) _and (1.74%) _neural (1.90%) former (7.25%) , (5.54%)
Block 30 (6.24%) _â ¦" (6.04%) _ (3.56%) _network (7.34%) _for (5.45%) _which (6.05%) _neural (6.14%) former (7.30%) Â (8.04%)
Block 31 (7.76%) !!" (5.96%) _ (8.27%) _network (8.68%) _for (8.36%) _the (7.67%) _Conv (7.46%) former (7.35%) , (8.37%)
Block 32 (7.84%) â ¦." (5.81%) !?" (8.35%) _network (8.78%) , (8.43%) _and (7.70%) _neural (7.51%) former (7.57%) _model (8.53%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

Figure 14: Joint jet lens with learnable weightings (k = 1), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.19%) bie (4.48%) _simple (4.99%) _neural (0.98%) _architecture (1.08%) _and (5.08%) _the (5.85%) fig (2.07%) former (1.01%)
Block 2 (1.81%) _arrivals (2.43%) tons (1.22%) _rack (3.83%) _model (1.07%) _the (1.01%) _main (1.01%) ient (3.10%) _generation (0.85%)
Block 3 (2.49%) _entry (5.53%) _fitting (5.41%) _clusters (3.05%) _det (1.14%) _thanks (0.99%) _second (1.00%) cription (0.97%) _barrier (1.86%)
Block 4 (3.02%) bies (3.47%) _private (5.64%) _env (5.41%) _clusters (1.18%) _aspirin (1.09%) _hypothesis (1.08%) cript (5.55%) _Mund (0.75%)
Block 5 (1.75%) _mansion (3.47%) _Transcript (1.03%) ous (2.48%) _suit (1.15%) chuk (1.11%) _Oracle (1.17%) _Card (2.55%) cknow (1.00%)
Block 6 (1.84%) _Parables (2.46%) _Bald (1.45%) izer (0.99%) sche (1.21%) %); (1.11%) ija (1.18%) ione (5.34%) atti (1.01%)
Block 7 (2.51%) DERR (2.47%) _sp (1.62%) _wired (3.21%) inea (1.19%))* (1.02%) _gloss (1.17%) aways (4.96%) _system (4.48%)
Block 8 (1.80%) , (2.32%) _Tall (1.04%) _experiments (0.89%) MIT (1.21%) mac (1.06%) fts (1.16%) rock (5.75%) con (0.97%)
Block 9 (1.79%) , (2.19%) onel (1.11%) _layer (5.70%) _hum (1.10%) arily (1.06%) _Hots (1.20%) iter (0.98%) _boxes (0.96%)

Block 10 (2.17%) , (2.18%) tested (1.09%) / (6.21%) _deployed (1.18%) _disrupt (3.01%) ew (1.11%) _INS (0.76%) _Drive (1.80%)
Block 11 (1.20%) , (2.18%) azon (1.10%) ã ³ã ¸ (1.00%) ea (1.20%) Ro (1.10%) _Dive (1.10%) _Revised (0.95%) _Prol (1.00%)
Block 12 (1.17%) , (2.20%) _Think (1.05%) _Dish (0.86%) _Layer (1.11%) _Sing (0.99%) uts (1.16%) _button (0.94%) _proble (1.02%)
Block 13 (1.88%) _and (2.22%) _ab (2.77%) ourt (4.71%) _Malf (1.20%) _REPL (0.99%) _naked (1.17%) oran (0.98%) _cred (1.01%)
Block 14 (1.60%) _and (2.22%) alg (1.06%) _underestimated (0.97%) _percentile (1.19%) _which (2.35%) _nonetheless (1.15%) igo (3.05%) _Hut (0.81%)
Block 15 (2.19%) _and (2.24%) - (4.45%) _Subst (1.01%) chan (1.16%) ATURES (1.09%) _hitch (1.19%) _Mini (0.99%) _Bre (5.41%)
Block 16 (2.24%) _and (2.26%) _image (5.83%) _cell (4.89%) _packs (1.05%) _marked (0.91%) _Finn (1.09%) omes (0.89%) _Cipher (0.99%)
Block 17 (1.72%) _and (2.27%) Ä (1.11%) _formulation (0.96%) isen (1.22%) _modular (1.08%) _Space (0.99%) _Neural (0.85%) _Trainer (5.29%)
Block 18 (1.54%) _and (2.21%) _bond (1.06%) _IPM (1.01%) _((4.36%) build (0.97%) plex (1.04%) brand (0.78%) _Quest (0.91%)
Block 19 (2.17%) _and (2.13%) _cross (3.75%) _proceeds (5.61%) _named (2.11%) _called (0.93%) _parallel (1.08%) Shares (0.96%) _lost (0.81%)
Block 20 (2.64%) , (3.62%) ": (0.98%) rons (1.15%) _Neural (2.26%) _coupled (4.39%) _omn (2.30%) fect (4.73%) _Fly (1.73%)
Block 21 (1.27%) , (3.47%) _ft (0.97%) ysis (1.03%) _template (1.09%) _with (0.83%) _latter (1.09%) adic (0.79%) â ¢ (0.87%)
Block 22 (3.88%) , (3.56%) types (0.98%) _Turing (2.15%) . (7.00%) _which (4.55%) _most (5.96%) gress (1.06%) _VT (5.74%)
Block 23 (3.17%) , (3.95%) tv (1.07%) blade (0.96%) _..." (1.16%) _i (2.87%) _model (5.98%) du (4.83%) _erg (4.52%)
Block 24 (5.36%) , (3.89%) _prayers (5.37%) _Turing (6.05%) , (6.95%) _which (5.59%) _brain (6.37%) Memory (5.62%) als (3.00%)
Block 25 (2.84%) , (3.80%) _complex (0.86%) _surgery (0.93%) " (0.97%) _Neural (1.57%) _one (5.52%) _EEG (3.47%) , (5.60%)
Block 26 (5.61%) , (3.63%) _dot (6.73%) _Turing (6.16%) _for (7.62%) _then (6.26%) _Neural (5.36%) ocy (5.16%) _robot (3.94%)
Block 27 (4.91%) , (3.64%) ?" (7.12%) _algorithm (2.21%) ". (6.61%) _where (5.86%) _so (5.87%) vier (1.80%) _or (6.21%)
Block 28 (3.91%) , (2.94%) _solution (0.91%) _simulation (4.19%) ", (5.57%) _which (5.97%) _F (6.14%) imil (0.95%) _Mega (4.63%)
Block 29 (4.07%) , (1.51%) _life (6.69%) _network (2.58%)] (2.36%) _using (5.32%) _neural (6.09%) Washington (4.30%) _brains (3.73%)
Block 30 (5.05%) , (1.96%) Ã (5.52%) _net (5.50%) _that (7.83%) _neural (6.24%) _neural (6.05%) _underground (4.91%) _Brain (2.39%)
Block 31 (5.02%) , (2.04%) " (6.84%) _Machine (3.46%) ," (7.99%) _neural (6.56%) _neural (6.10%) onet (0.95%) _neural (6.19%)
Block 32 (5.00%) , (2.06%) ' (5.21%) _net (0.94%) ' (7.68%) _called (6.27%) _simple (6.34%) haus (5.11%) 3 (6.41%)
Block 33 (3.65%) , (2.08%) ' (0.83%) _assembly (5.90%) ' (1.61%) _to (5.86%) _TW (1.51%) Global (5.96%) _LL (5.41%)
Block 34 (2.57%) , (2.10%) _to (1.01%) _vide (0.99%) , (2.72%) _and (1.15%) _class (1.00%) lc (5.89%) , (5.73%)
Block 35 (1.67%) , (2.12%) client (1.09%) _NET (1.00%) (3.33%) _and (2.74%) _reservoir (1.16%) Draft (1.02%) _scripts (0.93%)
Block 36 (1.28%) (2.69%) (1.06%) gil (1.03%) (1.15%) (1.01%) _Leopard (1.22%) artist (1.05%) stals (1.02%)

Logits _ " _network ' _which _neural c ,
Expan. (0.980) , - _network _for _which _neural - ,

Figure 15: Joint jet lens with learnable weightings (k = 0), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

21

Preprint.

new _simple _neural _architecture , _the _Trans former
Block 1 (3.50%) bie (3.17%) " (4.75%) _network (5.93%) " (3.61%) _which (1.15%) _neural (1.60%) c (5.06%) _is (2.74%)
Block 2 (3.14%) _ (0.84%) " (4.15%) _network (5.49%) ' (1.80%) _which (4.28%) _neural (4.04%) c (3.60%) _is (0.93%)
Block 3 (1.19%) _ (0.86%) " (0.91%) _network (0.84%) ' (1.05%) _which (1.81%) _neural (2.17%) c (0.78%) _is (1.08%)
Block 4 (1.08%) - (0.77%) ton (1.88%) _network (1.27%) ' (0.99%) _we (0.96%) _neural (0.94%) c (0.75%) _is (1.07%)
Block 5 (0.98%) _ (0.74%) " (1.03%) _network (0.98%) ' (1.06%) _where (1.01%) _brain (1.00%) c (0.88%) _is (1.13%)
Block 6 (1.29%) _ (3.29%) " (1.01%) _network (0.93%) ' (1.07%) _and (1.00%) _neural (1.00%) c (0.93%) _is (1.06%)
Block 7 (1.32%) _ (3.60%) " (1.04%) _network (0.97%) ' (1.10%) _which (1.00%) _neural (1.00%) parent (0.89%) _is (0.97%)
Block 8 (1.35%) _ (3.71%) " (1.05%) _network (0.95%) ' (1.07%) _which (0.98%) _researchers (0.99%) ient (0.97%) _is (1.10%)
Block 9 (1.44%) , (3.74%) " (1.04%) _network (0.83%) ' (1.07%) _which (0.99%) _neural (0.99%) c (0.94%) _is (1.91%)

Block 10 (1.47%) - (3.73%) " (1.04%) _network (1.44%) ' (1.07%) _which (0.97%) _neural (0.99%) former (0.93%) _AI (1.57%)
Block 11 (1.36%) - (3.71%) " (0.98%) _network (1.01%) ' (1.12%) _which (0.98%) _neural (0.98%) c (0.99%) _is (1.10%)
Block 12 (1.36%) _ (3.69%) " (1.00%) _network (1.04%) ' (1.08%) _which (0.97%) _neural (0.97%) c (1.03%) , (1.12%)
Block 13 (1.35%) _ (3.65%) " (1.01%) _network (1.04%) " (1.10%) _where (0.96%) _neural (0.96%) c (1.01%) _Cortex (1.09%)
Block 14 (1.31%) _ (3.61%) " (1.00%) _network (1.02%) ' (1.07%) _a (0.74%) _neural (0.92%) ient (1.00%) _is (1.10%)
Block 15 (1.30%) _ (3.54%) " (0.99%) _network (1.03%) ' (1.07%) _which (0.93%) _neural (0.93%) c (1.00%) _chip (0.90%)
Block 16 (1.30%) _ (3.43%) " (1.04%) _network (0.95%) ' (1.09%) _and (0.89%) _neural (0.89%) c (0.99%) , (1.13%)
Block 17 (1.28%) _ (3.36%) " (0.97%) _network (0.95%) ' (1.09%) _which (0.90%) _neural (0.86%) c (0.99%) . (1.10%)
Block 18 (1.14%) _ (2.81%) _ (0.92%) _network (1.00%) ' (0.90%) _a (0.74%) _more (0.79%) c (0.90%) _chip (1.09%)
Block 19 (0.99%) _ (0.98%) " (0.84%) _network (0.88%) ' (0.95%) _or (1.44%) _neural (0.76%) c (0.98%) _architecture (1.10%)
Block 20 (1.53%) , (0.95%) x (0.88%) _network (0.95%) ' (0.99%) _we (3.52%) _authors (3.11%) c (0.77%) _is (1.07%)
Block 21 (1.23%) , (0.96%) " (0.86%) _networks (0.90%) ' (1.04%) _neural (1.93%) _network (1.16%) c (1.93%) _is (1.07%)
Block 22 (1.92%) - (0.96%) " (2.47%) _network (0.88%) ' (1.05%) _we (4.10%) _neural (4.13%) c (0.78%) _Brain (0.98%)
Block 23 (2.10%) _ (0.90%) _stuff (0.79%) _network (1.16%) ' (0.85%) _similar (3.67%) _cu (4.65%) c (3.79%) _is (0.99%)
Block 24 (3.00%) _ (0.93%) " (2.25%) _network (4.69%) ' (2.88%) ' (4.60%) _ART (4.85%) c (2.96%) , (0.85%)
Block 25 (3.99%) "]=> (3.39%) ton (4.25%) _net (2.85%) ' (2.19%) _with (4.38%) _loc (4.88%) c (5.43%) _S (4.59%)
Block 26 (3.96%) Instance (3.52%) ' (3.67%) _network (3.98%) ' (4.45%) _Cooper (4.93%) _first (4.80%) c (4.25%) , (2.07%)
Block 27 (4.99%) _ (3.24%) tons (5.87%) _network (4.56%) _of (5.90%) _but (4.78%) _neuron (4.83%) c (4.85%) _Memory (5.85%)
Block 28 (5.13%) _ (3.08%) ton (5.20%) _network (5.48%) _for (5.93%) _NI (4.98%) _first (4.92%) ient (5.17%) _uses (6.28%)
Block 29 (5.04%) _ (3.27%) me (5.80%) _network (5.64%) ". (5.22%) _NAT (4.95%) _authors (4.94%) ient (5.52%) _3000 (5.00%)
Block 30 (4.88%) _ (3.40%) _kitchen (4.88%) _network (5.69%) " (5.41%) _prototyp (4.94%) _algorithm (4.88%) ient (5.55%) _uses (4.30%)
Block 31 (5.31%) _ (3.61%) x (6.06%) _network (3.85%) ' (6.79%) _geared (5.16%) _traditional (5.00%) c (5.28%) _XL (6.76%)
Block 32 (5.51%) - (3.70%) _white (5.66%) _network (5.56%) " (6.48%) ", (5.09%) _WS (5.03%) c (5.33%) _is (7.26%)
Block 33 (5.75%) , (3.73%) " (6.05%) _network (6.01%) " (6.91%) _which (5.15%) _neural (5.05%) c (5.66%) _Robot (7.46%)
Block 34 (5.88%) , (3.73%) ton (6.26%) _network (6.49%) ", (6.91%) _which (5.15%) _neural (5.04%) ient (5.96%) _Cortex (7.50%)
Block 35 (5.77%) - (3.74%) " (6.11%) _network (6.26%) _model (6.90%) _modeled (5.03%) _neural (4.97%) ient (6.03%) _model (7.17%)
Block 36 (5.85%) _ (3.67%) " (6.29%) _network (6.51%) ' (6.77%) _which (4.95%) _neural (5.00%) c (6.10%) _is (7.52%)

Logits _ " _network ' _which _neural c ,
Expan. (0.994) _ " _network ' _and _neural c _is

Figure 16: Joint jet lens with learnable weightings (k = 1), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

Figure 17: Empirical runtime of evaluations of jet expansions originating form the joint jet lenses as a ratio of
the evaluation of the input model.

D RUNTIME

We report in Figure 17 a plot of the runtime for evaluating expansions originating from the joint jet
lenses of Section 5.1 as a ratio of the input model evaluation (forward pass), for both the uniform
and the optimized jet weight setup, for different jet orders.

22

	Introduction
	Residual networks and their rewritings
	Recursive expansion of residual networks with jets
	Notable expansions and their implications
	Interpreting LLMs with jet expansions
	Analyzing LLM inner working
	Analyzing pretraining dynamics
	Analyzing fine-tuning effect

	Related work
	Conclusion and discussion
	Additional details on jets
	Additional Tables for Jet Bi-grams
	Additional plots of jet lenses
	Runtime

