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Research Theme

Towards Al systems with more controllability

The history of Al has come a long way but are we there yet?
- From expert systems to deep learning

- Now it seems that everything converges to language models, LLMs!

- structured rule-based based Al — unstructured data-reliant Al?
LLMs are awesome

- They are trained and inferences in continuous spaces which is good for scaling up and free-
form generation!

However, once you start examining the generation from RAW LLMs,

- They can be hard to control: hallucination, bias, toxicity, “magic” etc.

- Moreover, LLM weights are static snapshotting partial reality at a certain time point.
- Our reality/values/needs is always evolving.

- These giant models quickly evolve to our latest reality/values/needs.

The history of Al

1940s-1@
950s

1960s-1@
970s

1980s @

1990s @

2000s @

2010s ©

2020s ©

Foundations of Al

In the 1940s, the first artificial
neurons were conceptualised. The
1950s introduced us to the Turing
Test and the term “Artificial
Intelligence.

Early Development

The 60s and 70s brought the birth
of ELIZA, simulating human
conversation, and Dendral, the first
expert system, showcasing the
early potentials of Al.

Al Winter &
Expert Systems

The 80s faced reduced Al funding [\
but saw the inaugural Nationall o
Conference on Al. The
backpropagation concept
rejuvenated neural networks.

Revival &
Emergence of ML

The 90s witnessed IBM’s Deep Blue
defeating chess champion Garry
Kasparov and the inception of the
LOOM project, laying the foundations
for GenAl.

The Genesis of
Generative Al

Geoffrey Hinton propelled deep
learning into the limelight, steering
Al toward relentless growth and
innovation.

Rise of Al

In 2011, IBM Watson won “Jeopardy!”,
highlighting Al's language skills. The
2010s marked major Al milestones,
including pioneering work in image
recognition and the birth of GANs in
2014, followed by OpenAl's founding in
2015.

GenAl Reaches

New Horizons 3 O
At the start of this decade, we've seen penAJ
significant strides in GenAl, notably @

with OpenAl's GPT-3 and DALL-E. 2023 ChatGPT
welcomed advanced tools like

ChatGPT-4 and Google’s Bard,

alongside Microsoft’s Bing Al,

enhancing accessibility and reliability

of information.



Research Theme

Towards Al systems with more controllability

- In order to progress from such naive “continuous space reasoning”

Primates
Bmog:qlar
vision - - Approach 1: Scaling
s - continue retraining/pretraining with more data and more frequently
- Approach 2: Mimicking “natural” intelligence, which has gone through sensory to symbolic evolution
Human
Symbolic - allowed planning and reasoning to happen before motion
Symbol System
- and fast adaptation to new environments with tool/s developed in old environments
: - augmenting LLMs with xyz
Sign
)
Q€ - RAG
S~
& L
Reality ac co
Anima[ [Cassirer, 1945] - TOOIS
1114 8€ SOUrce. Rdldel vicird pretds, Y Ullllko
i¥raga sakir ¢kt sk ald dirikie1Ph dae tasyiSutionko dfdbmawaki, - Magic prompts, data mixture, synthetic data prompt ...

Avsolshtidmi khaPpaseltrredshnomasofdrgim gealution that
hagimgdNeureseiknup Research apemd, Neuroscience

Research 2020 - Great, but not that easy to control ...



Research Theme

Controlling via a symbolic system to structure the reality

BAFTA Award for Best Actress in a
Female Supporting Role

Y 4
gender award winner

award winner

Maureen Stapleton
¥, nationall

award nomination/i ominated for /
United States award won

film release region

Reds (Film)

How about

knowledge

graphs

000

Academy Award for Best Supporting Actress

Empowering Google search,
recommender systems,

biomedical ontological reasoning

etc...

Human
Symbolic
Symbol System
Sign
2 g
S &
g o
Reality x
Animal

[Cassirer, 1945)

image source: Rafael Vieira Bretas, Yumiko
Yamazaki, Atsushi Iriki. Phase transitions of brain
evolution that produced human language and
beyond, Neuroscience Research 2020



Research Theme

Controllability via a symbolic system to structure the reality

BAFTA Award for Best Actress in a
| Supporting Role

award winner

award won

Reds (Film)

Academy Award for Best Supporting Actress

> ou—

Controlling: delete, edit, update

As easy as overwriting local structures

BAFTA Award for Best Actress in a
| Supporting Role |

’award winner
# B 'y L]
v

Maureen Stapleton

v, nationali
Academy Award for Best Supporting Actress

> op—

award won

award nomination/i:ominated for

United States \

film release region

Reds (Film)
"



| award nominationl‘)minated for |

United States

| film release region

Reds (Film)

tructured vs Unstructured

Pros

Cons

controllable (easy to update/
edit/remove), interpretable,

construction cost, missing

Structured . . .
reasoning, planning entries
enerative! (can create L.
5 ( . hard to control (hallucination/
Unstructured answers for any questions), . .
toxicity), expensive

Ingest huge data




Structured vs Unstructured

Structured Unstructured

knowledge graph (KG),
ontology etc

Data Format free-form text

Transformer-based language

Model Architecture factorization, GNNs
models

Learning Objective entity prediction (masked) language modeling




Bricdge the two learning paradigms

However both systems are symbolic.

- For unstructured learning, in LLMs, the
symbols are the tokens from each vocabulary
of the language.

- For structured learning, in knowledge graphs
the symbols are the entities/relations in each
vocabulary of the graph

The difference is only in
- Granularity of symbols

- Prebuilt structures (which characterizes the
interaction between symbols)

Structured

Unstructured

Expected Outcome

Find a good tradeoff between “representation’

and its enabled “computation”

Learning Objective

(Masked) language modeling works for both!

[1]

Architecture

Embeddings + “Body” + (Un)Embeddings

Generalization

Embedding resetting increases model
plasticity for both [2] [3]

Interpretability

Un-cache the compute stored in embeddings
leads to data graph reconstruction for both
(under review)

[1] CHEN ET AL 2021 RELATION PREDICTION AS AN AUXILIARY TRAINING OBJECTIVE FOR IMPROVING MULTI-RELATIONAL GRAPH REPRESENTATIONS.
[2] CHEN ET AL 2022 REFACTOR GNNS: REVISITING FACTORISATION-BASED MODELS FROM A MESSAGE-PASSING PERSPECTIVE
[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING




ridge the two learning paradigms

TN
i ' Structured Unstructured

g Expected Outcome Find a good tradeoff between “representation”
- % = 11 - }]
e P and its enabled “computation

Pretrai New i
retrain Lingual Space 3 Lingual Space 4

kl.ingual Spacej kLinguaI Space 1 Lingual Space 2

transformer body o~ % frozen =) token embedding layer token embedding layer
pretrained with MLM  %s «* component gF&s pretrained in English adapted to a new language

1

Learning Objective |(Masked) language modeling works for both [1]

Architecture Embeddings + “Body” + (Un)Embeddings

Embedding forgetting helps generalization

Generalization
to the unseen [2][3]

Un-cache the compute stored in embeddings
Interpretability leads to data graph reconstruction for both
(under review)

c. Inductive inference

[1] CHEN ET AL 2021 RELATION PREDICTION AS AN AUXILIARY TRAINING OBJECTIVE FOR IMPROVING MULTI-RELATIONAL GRAPH REPRESENTATIONS.
[2] CHEN ET AL 2022 REFACTOR GNNS: REVISITING FACTORISATION-BASED MODELS FROM A MESSAGE-PASSING PERSPECTIVE
[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING



The Role of Embedding and How It Impacts Generalization
(in short)

cat => 12 | 01 | 43 | 32

mat => | o4 | 25 | 09| 05

We propose the message-passage reframing of symbol embeddings optimization

on — 2.1 0.3 0.1 0.4

- symbol embeddings as memory which caches data traversal during training

- too much memory in old environments -> poor generalization In new environments

- So what?

- symbol embedding forgetting helps generalization to the unseen

L}
XXXXXX

- graphs with ReFactorGNN _ e

aaaaaaaaaaaaaa

- languages with forgetting pretrained LMs

nowledge Base Completio...

- using GNN terminology:

- “inductivise” transductive models e e <ol



Embeddings for knowledge graph representation learning:
factorization-based models

|

V

DistMult as Exampl

12
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Implicit Message-Passing within FMs

Theorem 3.1 (Message passing in FMs). The gradient descent operator (1) on the node embeddings

of a DistMult model (4) with objective ) and a multi-relational graph (E,7T ) induces a message-
passing operator whose composing functions are:

_ _ W= w] @ g(r) if (r,w) € Ni[v],
l C Maccnan(Bl—1 I—1 _ ! 7T, +Y;
m{v, v w] = Message(h™" v, r, K" {w]) { (1 — Py(v|w,r))h=tw] © g(r) if (r,w) € N_[v];
(8)
zl[v] — Aggregate({ml[v, row| o (ryw) € Nul}) = Z m[[v, r,w); (9)
(r,w)€eN[v]
h'[v] = Update(h' o], 2! [w]) = A1 u] + a2z =] — gn' 1], (10)
where, defining the sets of triples T ™" = {(s,r,w) € T : s=vAw #v}tand T " = {(s,r,w) €
T : s#vAw# v}, Prio and Pr—. as their associated empirical probability distributions,
7 ol (v,ryu) |77 Il (s, r,v)
[v] = Ep . B, potos ’ Ep  Py(v|s. | 11
o) = T Bere Bunro o —gpmr— + T Beps Polvls,r) =500 (1)

Extensions to other score functions: see lemma A.1in the paper

[2] CHEN ET AL 2022 REFACTOR GNNS: REVISITING FACTORISATION-BASED MODELS FROM A MESSAGE-PASSING PERSPECTIVE NEURIPS 2022
14



Implicit Message-Passing within FMs (layman summary)

Treat the node embedding layer as a historical memory of node states

One gradient descent step over the embeddings induces one message-passing layer

- In-coming and out-going neighbourhood |
Pv|w,r)

‘
3 [ Softruax }

1 =P,y | v, 1) 1 =Py | v, 1)

. Cb[Vz] (ry) P[vs] (1)
- global normaliser vf o ér

Such message-passing over data graph is “cached” into embeddings via accumulating
the update vector into the history.

-  relation-aware

[2] CHEN ET AL 2022 REFACTOR GNNS: REVISITING FACTORISATION-BASED MODELS FROM A MESSAGE-PASSING PERSPECTIVE NEURIPS 2022
15



Tensor factorization

Graph neural networks

16



=2

ho[w]

17



the message-passing rounds (some visualization of memory
cleanup)

Node State Cache

Backpropagate

18



Controlling the rounds of message-passing compute

Equivalently, "Inductivise” factorization models by truncating
infinite to K message-passing

Every reasoning is forced to use fixed number of hops
neighboring information rather than memorize everything for
reasoning

19



Implication

e Factorization methods are
known to be transductive
despite their impressive
performance on link
prediction

 Now we can make them
iInductive.

e (Generalize to unseen nodes!

a. Training graph

c. Inductive inference

20



Results

e (Generalize to unseen nodes!

a. Training graph

c. Inductive inference

No Pretrain

GAT(3)

GAT(6)
ReFactor(3)
ReFactor(6)
Neural-LP

DRUM

RuleN

GralL (Teru 2020)

NBFNet (Zhu 2021)

0.00 0.25 0.50 0.75

® With Random Features = With Textual Features

0.215
0.242
0.333
0.401

0.673

0.529

. 04529

. 0498

R 0642

0.806
0.826
0.9
0.787
0.92

. 0834

Hits@10, 50 Negative

1.00
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Moving to languages

/"

Pretrain New

Qingual Space J \Lingual Space 1/ Cn

n transformer body »* frozen
pretrained with MLM % «* component

gual Space 2 I \

N token embedding layer
pretrained in English

Lingual Space 3

J

/

New

Lingual Space 4

& J

token embedding layer
adapted to a new language

LLMs struggle with generalization with
under-represented languages.
Updating them to new languages can
be a headache.

ldeally, we want to avoid retraining.

[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING NEURIPS 2023

22



Generalising to languages

Every transformer-based language model begins with embeddings and end with (un)-embeddings.

X

A A
B B
0.12, -0.09, 0.04, 1.20
C C
N »
[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING NEURIPS 2023

23
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Pretraining with Active Forgetting

( -\ A cheap way of meta-learning LMs

- Simulating multiple language changes without
actually crafting the data in new language

-  Exposing the body to various embedding
reinitialisation

-  Encourage the body to encode more general
start forget! forget! end ] c ’
knowledge instead of “shortcut” knowledge
Pretrain that is tied to certain embedding initialisation

\ J values

[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING NEURIPS 2023

25



Pretraining with Active Forgetting

episodic learning curve, “spikes” when resetting

Training Loss of Forgetting LM Training Loss of Standard LM
— forget_K=1000 = standard

12 14

10 12

Training Loss

10

Step

(= B S D e ) B @ o)

20k 40k 60k 80k 100k 120k Step

20k 40k 60k 80k 100k 120k

[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING NEURIPS 2023
20



Results

 Generalising to unseen languages. Unsupervised zero-shot cross-lingual transfer!

@

U

-0
S
start

>

-

o4 | o) | D

K

S~~—7
forget! forget! end
Pretrain

)

[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING

-

>

Task Ado\p‘t y

L
N

.\

nguage A a\P‘E

(

_

~

Assemble

_/

NEURIPS 2023
217



Results

 Generalising to unseen languages with less data and compute!

a4 )
XNLI
) MLQA (F1 XQUAD (F1
i _ Task Adap‘t y (accuracy) ( ) ( )
= N
start forget! iorgetl end ! . Asse_mble_
5 Pretrain ) t_omguo\f,e AEQP‘E 9 y
On average Standard
PLM
+21.2% on XNLI,
o
+33.8% on MLQA Forgetting
PLM
+60.9% on XQuAD
[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING NEURIPS 2023

28



0
+00.9%

Forgetting brings an average gain of 60.9% on XQuAD when generalizing to unseen lang

29



So what?

* Help low-resources languages!

Relative Gain Across Languages on XNLI Relative Gain Across Languages on MLQA
-
P
% i <
c 00 9 40
© =
> 40
O -
© Standard © 20 - Standard
5 201 —
O Forget Forget
< 0 0
X
> = 60
£ 50- 4
G £ 40
225 ;
5 g2
I ® ol , , , , ,
vi sw es bg de fr el ru zh ur hi tr ar th & es Vi de zh hi ar
Language Language
[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING NEURIPS 2023

30



Scaling increases model capacity
while forgetting improves model
%ﬁtlclty -> easy to update to new




Research Vision




| award nominationl‘)minated for |

United States

| film release region

Reds (Film)

tructured + Unstructured

Pros

Cons

controllable (easy to update/
edit/remove), interpretable,

construction cost, missing

Structured . . .
reasoning, planning entries
enerative! (can create L.
5 ( . hard to control (hallucination/
Unstructured answers for any questions), . .
toxicity), expensive

Ingest huge data

33



Towards more controllable Al via channelling structured
and unstructured learning paradigms

H

“UNSTRUCTURED”

“STRUCTURED” = <“UNSTRUCTURED”
“STRUCTURED”

SYMBOLIC SYSTEM SYMBOLIC SYSTEM

| SENSORY INPUT SENSORY INPUT

iLII
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« We can identify the n-gram structures via
decomposing model weights

 Re-formatting LLMs into a universal
iInterface of n-grams

~

~

-
~

L

LLM LLM LLM
Diff Evolve ?
1-gram 2-gram 3-gram
database database database
N~— S~

N-gram as the universal format for various LLMs

J
™

_/

Juﬁg@w

Al2 OLMo

Gen N

translate into \

stacks of matrices

representing
a transformer

l

—/

Preliminary exploration (under review)

Applications

LLM Formatter

(weights -> N-gram databases)

LLM
Standardization

(various LLM codebases -> weights.npy)

390



Preliminary exploration

* We can identify the n-gram structures via decomposing model weights
 Data-free, weights-only LLM pretraining examination

Table 1: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct
step, while each row corresponds to a different rank. The table entries are the bi-grams at each step
for each rank. The number of tokens seen in association with the pretraining steps is also annotated.
The model gradually picks up meaningful bi-grams while starts from senseless bi-grams.

Rank OK [#steps] 100K 200K 300K 400K 555K
OB [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal s at least &amp &amp &amp
1 ICUirling at least s at least its own its own
2 ords architect 1its own &amp its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own  make sure
5 clonal 5% iums iums more than his own your own
6 Charg@{ you’re you’re can’t 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant ‘my more than make sure «can’t iums

36



Preliminary exploration

 We can identify the n-gram structures via decomposing model weights

« Domain-specific LLMs will reflect their magic data mixture and point us where to update.

P Rank LLAMA2-7B CodeLLAMA-7B CodeLLAMA-Python-7B
0 (_more, _than) (_like, wise) (_1like, wise)
50 (_Now, here) (_just, ification) (_Like, wise)
100 (_system, atically) (_in, _case) (_all, udes)
150 (_all, erg) (_get, ters) (_no, isy)
200 (_on, ions) (ktdober, s) (output, ted)
300 (_other, world) (_all, ud) (Object, ive)
350 (_Just, ified) (gebiet, s) (_as, cii)
400 (_trust, ees) (_Protest, s) (_can, nab)
450 (_at, he) (_deploy, ment) (_transport, ation)
500 (_book, mark) (Class, room) (Tag, ging)
550 (_from, ) (_access, ory) (_personal, ized)
600 (_WHEN, ever) (_In, variant) (_excess, ive)
650 (_where, about) (_I, _am) (_Add, itiomnal)
700 (ag, ged) (add, itionally) (_**, kwargs)
750 (_he, he) (_invalid, ate) (name, plates)
800 (_all, anto) (div, ision) (_select, ive)
850 (_Tom, orrow) (_process, ors) (_Assert, ions)
900 (_for, ays) (_Program, me) (blog, ger)

950 (_Bach, elor) (_set, up) (_can, cellation)




LLM Diff

§ r@ I ’ ‘O unbox-Illm [Codespaces: silver X

® @ LLM Diff - ComparingLLl X |

= O (@ [(5) https://silver-goggles-q774pp4xq5734wgr-8501.app.github.dev

LLM Diff -

Model 1

@® oracle_shakespeare_char

chargpt_11M
chargpt_11M_no_tying
chargpt_11M_no_tying_only_emb_unemb
llamal_7B

llama2_7B
llama2_7B_chat

) llama2_13B
llama2_70B
llamacode_7B
llamacode_7B_instruct
llamacode_7B_python
) gemma_2B
gemma_2B_it
gemma_7B
gemma_7B_it
gemma_7B_quant

) gemma_7B_it_quant

Model 2

@® oracle_shakespeare_char

chargpt_11M
chargpt_11M_no_tying
chargpt_11M_no_tying_only_emb_unemb

) llamal_7B

llama2_7B
llama2_7B_chat

) llama2_13B

llama2_70B
llamacode_7B
llamacode_7B_instruct

llamacode_7B_python

) gemma_2B

gemma_2B_it
gemma_7B
gemma_7B_it
gemma_7B_quant

) gemma_7B_it_quant

At which level do you want to compare oracle_shakespeare_char and oracle_shakespeare_char?

lgram

You selected: 1gram

lgram for o

ngram score token_1 token_1_id
0.1527 1
0.0852 43

0.0602

lgram for o

ngram score token_1 token_1_id rank
0.1527 1
0.0852 e 43

0.0602 t

™)
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LLIM Evolve

c» (i o ‘ ’O [Preview] README.md —unb: X @ @) LLM Evolution - Comparii X =

= @ A (5}  https://silver-goggles-q774pp4xq5734wgr-8501.app.github.dev

LLM Evolve

o ™) v T >

In this demo, we would like to show the evolution of oLme-78 , a recently open-sourced LLM by AllenAl. We

do this by visualizing the dynamic of the top N-grams that the LLM captures across different pretraining

steps.

At which level do you want to compare the checkpoints across pretraining steps?

cond2gram

You selected: cond2gram

Please select which pretraining step to inspect:

Pretraining Loss Curve

ngram
immortal
ICUirling
ords architect
yaml Adam
231 next
clonal£k
Charg@(

avoir careless

HOLD worsening

1.0 1.5 . . Horse dismant
#Tokens ‘

550000

token_1 token
Gimmortal &G~
GIcu

ords

yaml

231

clonal

GCharg

Gavoir

GHOLD

GHorse
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Towards more contro
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