

Bridging Structured and Unstructured Learning in Natural Language Processing

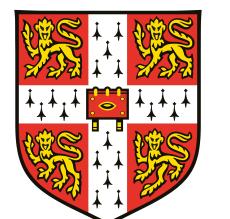
Personal Briefing

Yihong Chen

- Selected Publication
 - Generalization on unseen and rare XYZ
 - Improving Language Plasticity via Pretraining with Active Forgetting (NeurIPS 2023)
 - ReFactorGNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective (NeurIPS 2022)
 - λ opt: Learn to Regularize Recommender Models in Finer Levels (KDD 2019)
 - Self-supervised learning
 - Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021)
 - Efficient model training/adaptation
 - Breaking Physical and Linguistic Borders: Multilingual Federated Prompt Tuning for Low-Resource Languages (ICLR 2024)
 - Mini-Model Adaptation: Efficiently Extending Pretrained Models to New Languages via Aligned Shallow Training (ACL 2023)
 - Learnable Embedding Sizes for Recommender Systems (ICLR 2021)
 - Conversational agents
 - You impress me: Dialogue generation via mutual persona perception (ACL 2020)
 - Learning-to-ask: Knowledge Acquisition via 20 Questions (KDD 2019)

- Research Areas
 - Natural Language Processing
 - knowledge graphs
 - language models
- Education
 - Undergraduate and master's at EE Tsinghua
 - PhD at UCL and Meta
- Collaborators

THE UNIVERSITY
of EDINBURGH

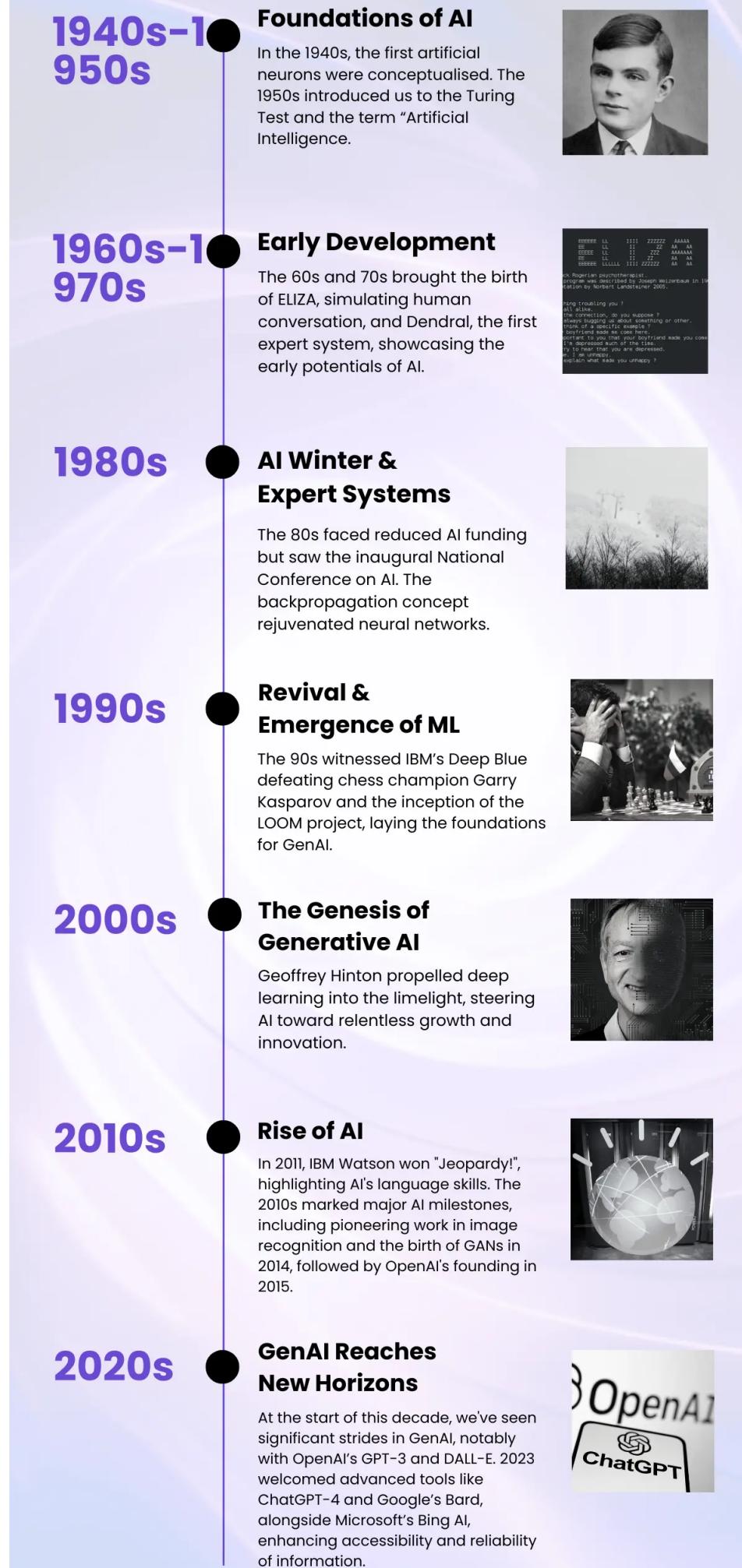


Research Theme

Towards AI systems with more controllability

- The history of AI has come a long way but are we there yet?
 - From expert systems to deep learning
 - Now it seems that everything converges to language models, LLMs!
 - structured rule-based based AI → unstructured data-reliant AI?
- LLMs are awesome
 - They are trained and inferences in continuous spaces which is good for scaling up and free-form generation!
- However, once you start examining the generation from RAW LLMs,
 - They can be hard to control: hallucination, bias, toxicity, “magic” etc.
 - Moreover, LLM weights are static snapshotting *partial* reality at a certain time point.
 - Our reality/values/needs is always *evolving*.
 - These giant models quickly evolve to our latest reality/values/needs.

The history of AI



Research Theme

Towards AI systems with more controllability

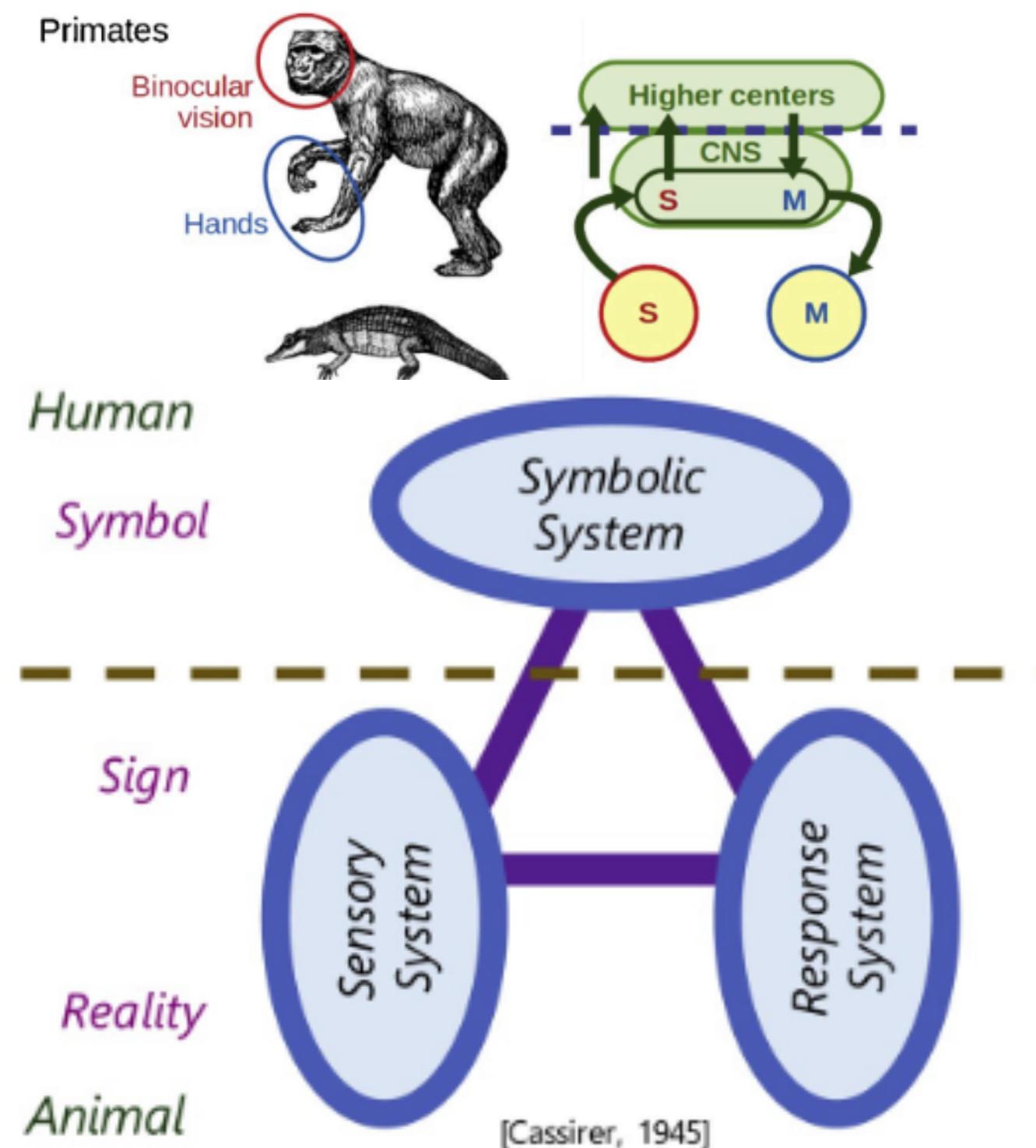
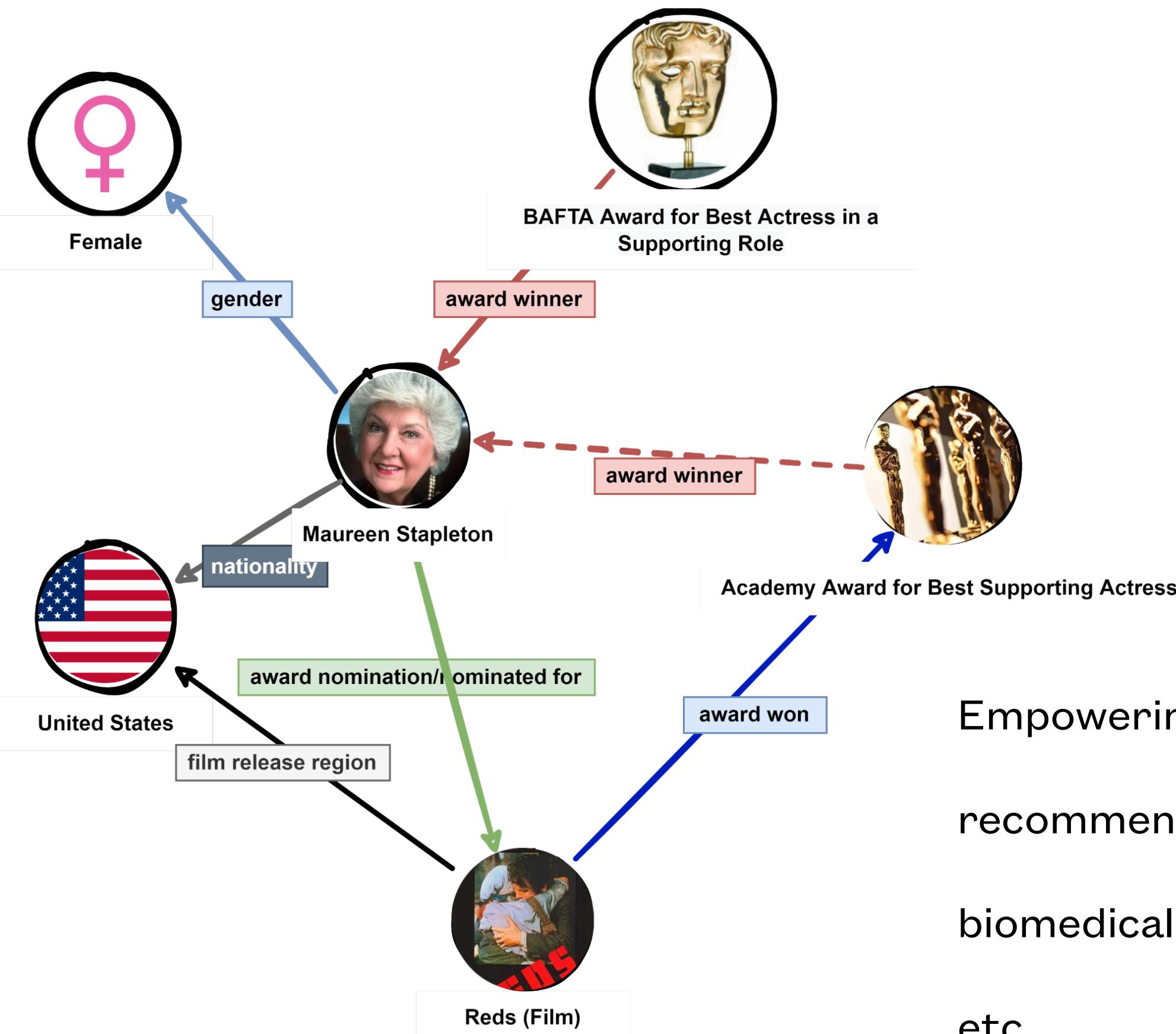


Image source: Karlae Vieira Bretas, Iuliano
Magazanik, Arafat Kiehl, Ph. Bretas, & Iwao
Magazanik, *A tool to aid the analysis of drug evaluation that
bridges Neuroscience Research beyond*, Neuroscience
Research 2020

- In order to progress from such naive “continuous space reasoning”
 - Approach 1: **Scaling**
 - continue retraining/pretraining with more data and more frequently
 - Approach 2: Mimicking “natural” intelligence, which has gone through sensory to *symbolic* evolution
 - allowed planning and reasoning to happen *before* motion
 - and fast adaptation to new environments with *tools* developed in old environments
 - augmenting LLMs with xyz
 - RAG
 - CoT
 - Tools
 - Magic prompts, data mixture, synthetic data prompt ...
 - Great, but not that easy to control ...

Research Theme

Controlling via a symbolic system to *structure* the reality



How about
knowledge
graphs
???

Empowering Google search,
recommender systems,
biomedical ontological reasoning
etc ...

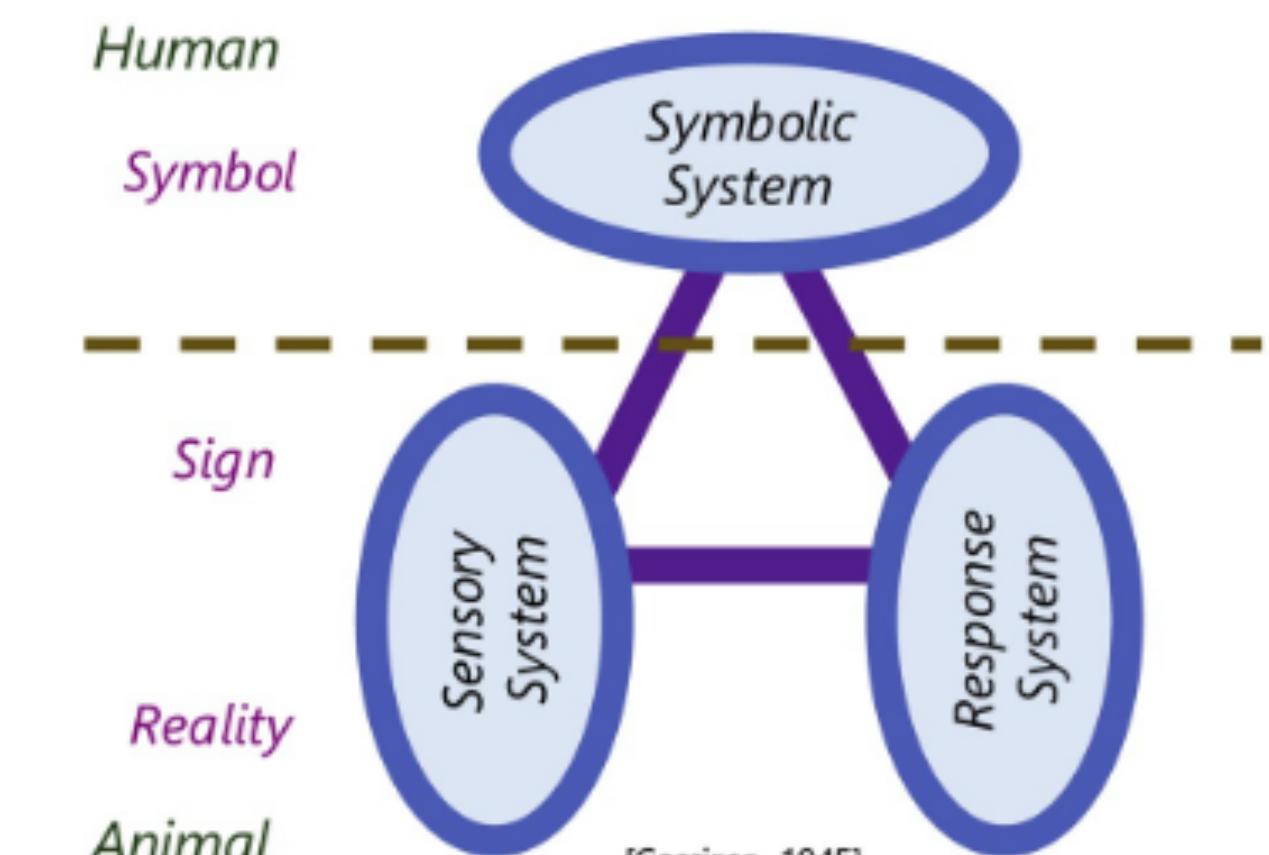
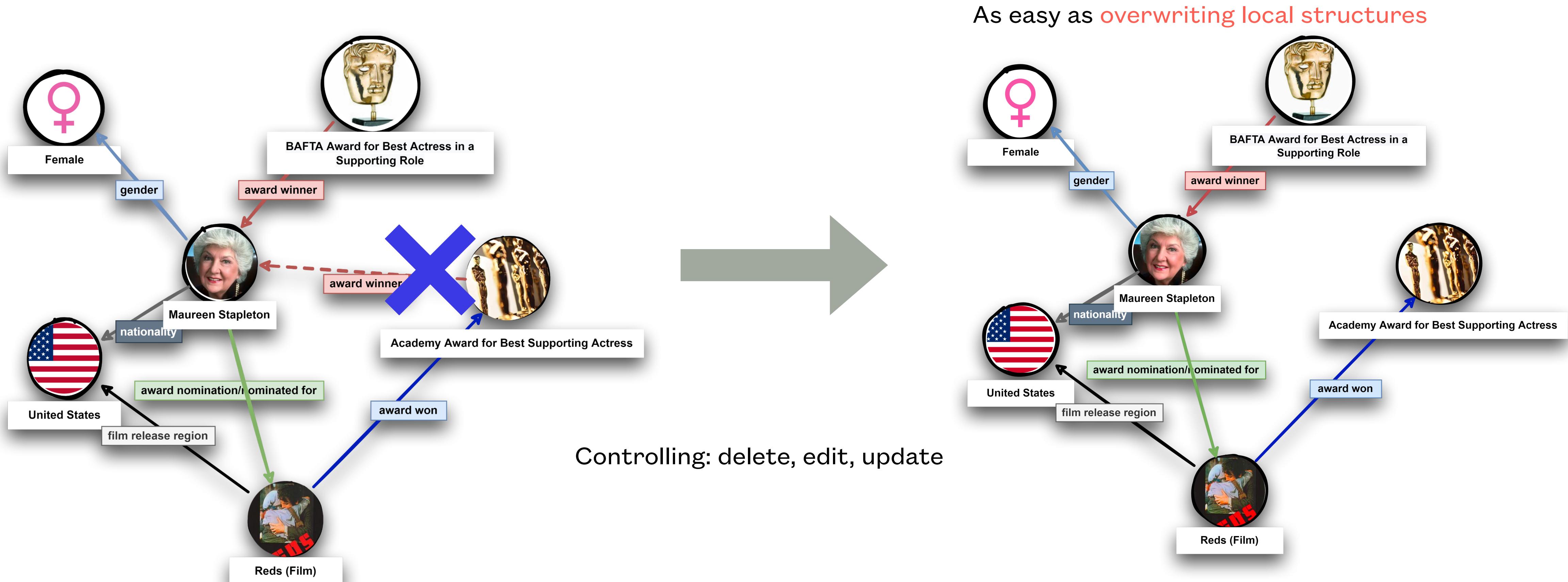


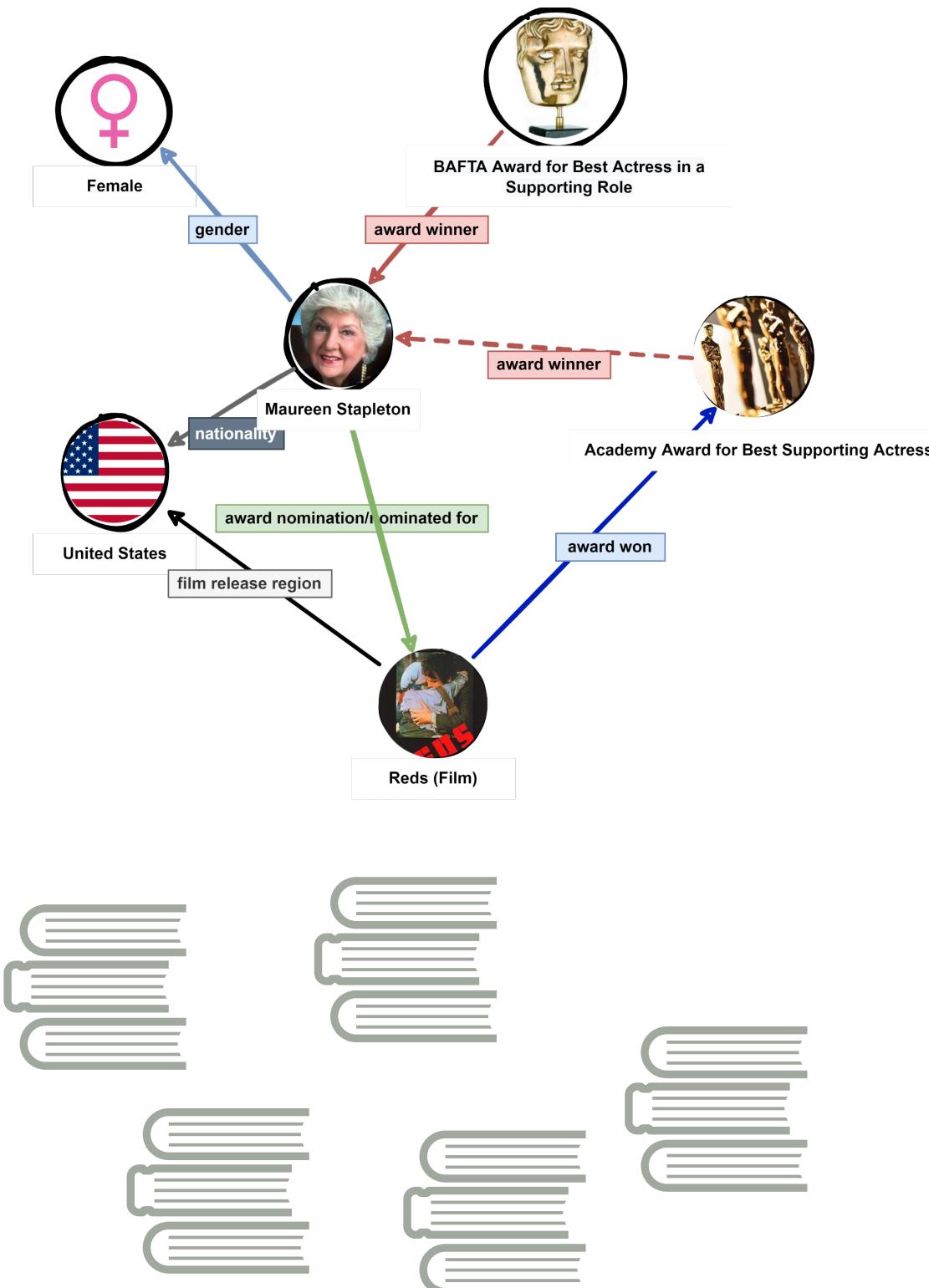
image source: Rafael Vieira Bretas, Yumiko Yamazaki, Atsushi Iriki. *Phase transitions of brain evolution that produced human language and beyond*, Neuroscience Research 2020

Research Theme

Controllability via a symbolic system to *structure* the reality

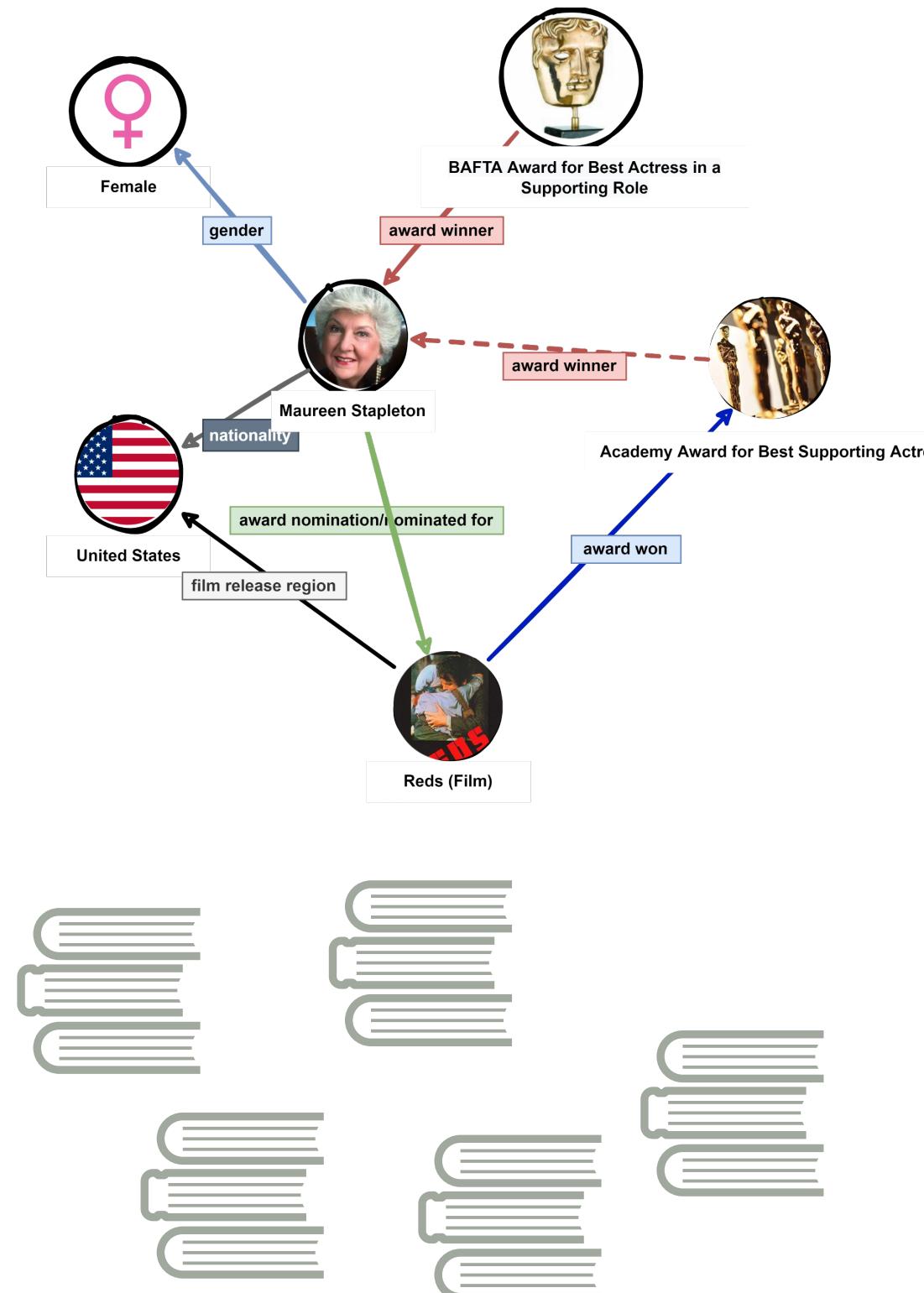


Structured vs Unstructured



	Pros	Cons
Structured	<p>controllable (easy to update/edit/remove), interpretable, reasoning, planning</p>	construction cost, missing entries
Unstructured	generative! (can create answers for any questions), ingest huge data	hard to control (hallucination/toxicity), expensive

Structured vs Unstructured



	Structured	Unstructured
Data Format	knowledge graph (KG), ontology etc	free-form text
Model Architecture	factorization, GNNs	Transformer-based language models
Learning Objective	entity prediction	(masked) language modeling

Bridge the two learning paradigms

However both systems are symbolic.

- For unstructured learning, in LLMs, the symbols are the tokens from each vocabulary of the language.
- For structured learning, in knowledge graphs the symbols are the entities/relations in each vocabulary of the graph

The difference is only in

- Granularity of symbols
- Prebuilt structures (which characterizes the interaction between symbols)

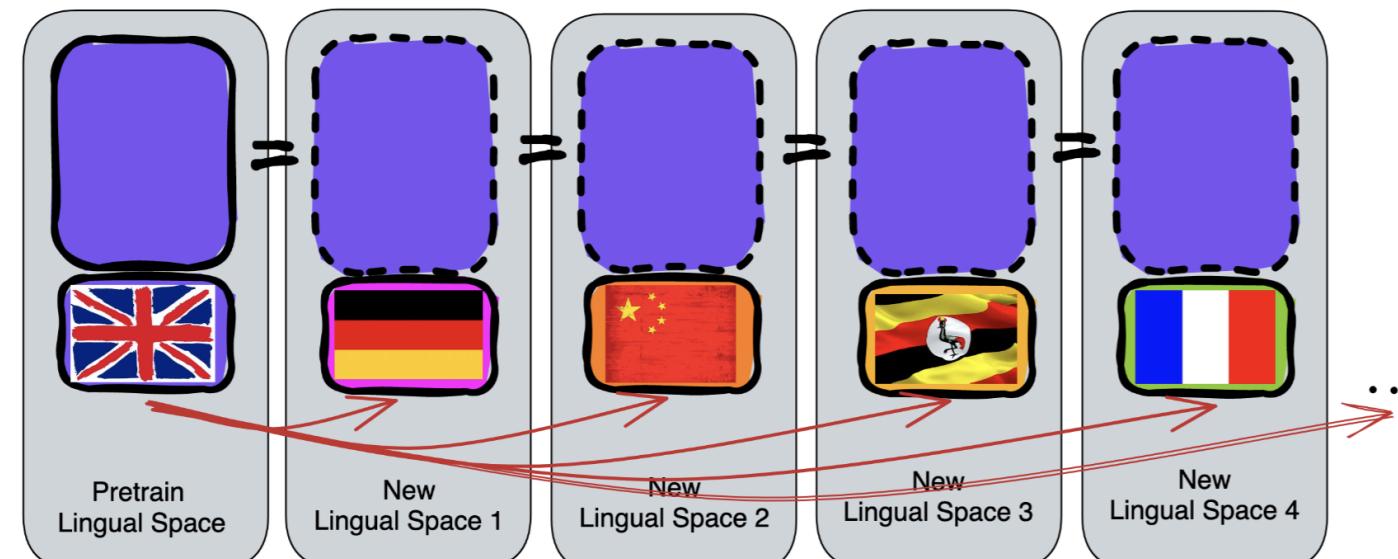
	Structured	Unstructured
Expected Outcome	Find a good tradeoff between “representation” and its enabled “computation”	
Learning Objective	(Masked) language modeling works for both! [1]	
Architecture	Embeddings + “Body” + (Un)Embeddings	
Generalization	Embedding resetting increases model plasticity for both [2] [3]	
Interpretability	Un-cache the compute stored in embeddings leads to data graph reconstruction for both (under review)	

[1] CHEN ET AL 2021 RELATION PREDICTION AS AN AUXILIARY TRAINING OBJECTIVE FOR IMPROVING MULTI-RELATIONAL GRAPH REPRESENTATIONS.

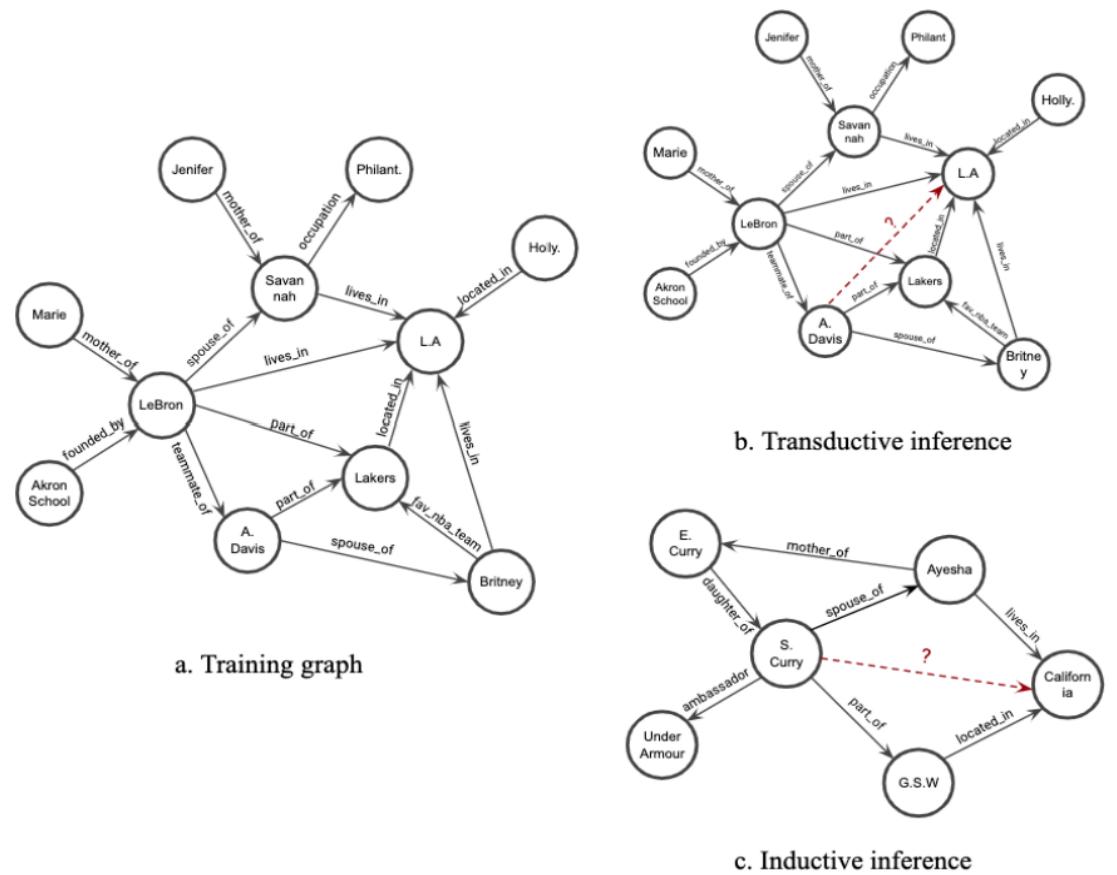
[2] CHEN ET AL 2022 REFACTOR GNNS: REVISITING FACTORISATION-BASED MODELS FROM A MESSAGE-PASSING PERSPECTIVE

[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING

Bridge the two learning paradigms



█ transformer body pretrained with MLM
 ○ frozen component
 █ token embedding layer pretrained in English
 █ token embedding layer adapted to a new language



	Structured	Unstructured
Expected Outcome		Find a good tradeoff between “representation” and its enabled “computation”
Learning Objective	(Masked) language modeling works for both [1]	
Architecture	Embeddings + “Body” + (Un)Embeddings	
Generalization		Embedding forgetting helps generalization to the unseen [2][3]
Interpretability		Un-cache the compute stored in embeddings leads to data graph reconstruction for both (under review)

[1] CHEN ET AL 2021 RELATION PREDICTION AS AN AUXILIARY TRAINING OBJECTIVE FOR IMPROVING MULTI-RELATIONAL GRAPH REPRESENTATIONS.

[2] CHEN ET AL 2022 REFACTORY GNNS: REVISITING FACTORISATION-BASED MODELS FROM A MESSAGE-PASSING PERSPECTIVE

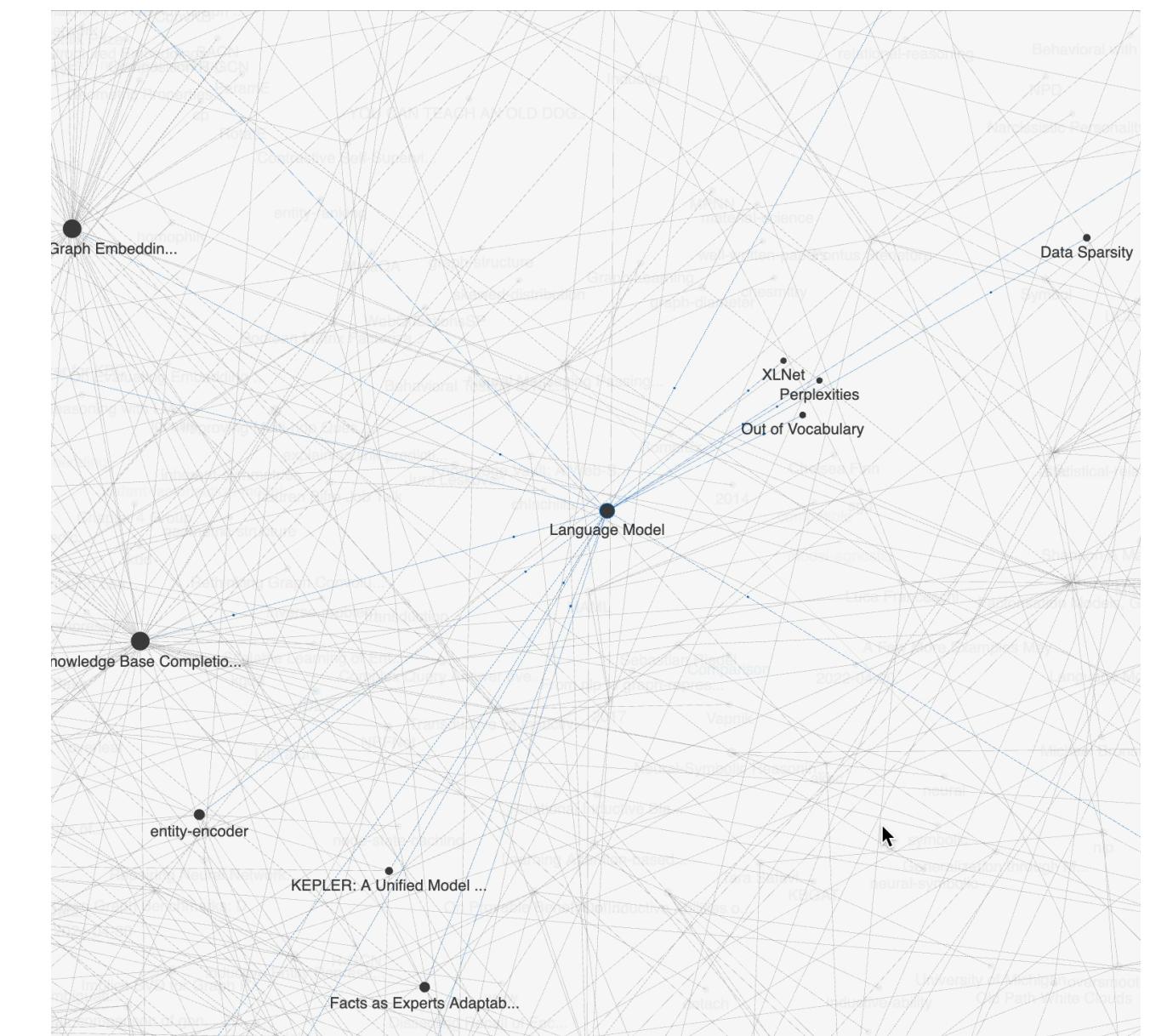
[3] CHEN ET AL 2023 IMPROVING LANGUAGE PLASTICITY VIA PRETRAINING WITH ACTIVE FORGETTING

The Role of Embedding and How It Impacts Generalization (in short)

We propose the message-passage reframing of *symbol embeddings optimization*

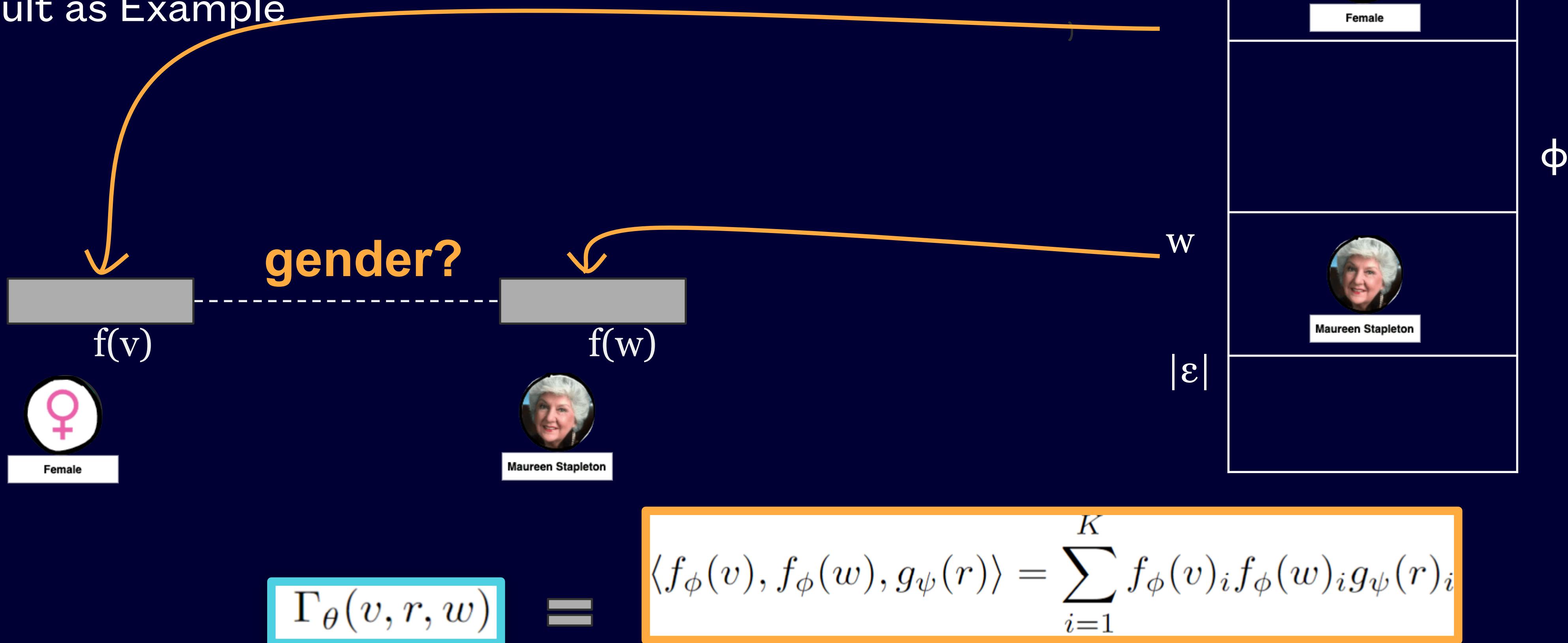
- symbol embeddings as memory which caches data traversal during training
- too much memory in old environments -> poor generalization in new environments
- So what?
 - *symbol embedding forgetting* helps generalization to the unseen
 - graphs with ReFactorGNN
 - languages with forgetting pretrained LMs
 - using GNN terminology:
 - “inductivise” transductive models

cat =>	1.2	-0.1	4.3	3.2
mat =>	0.4	2.5	-0.9	0.5
on =>	2.1	0.3	0.1	0.4

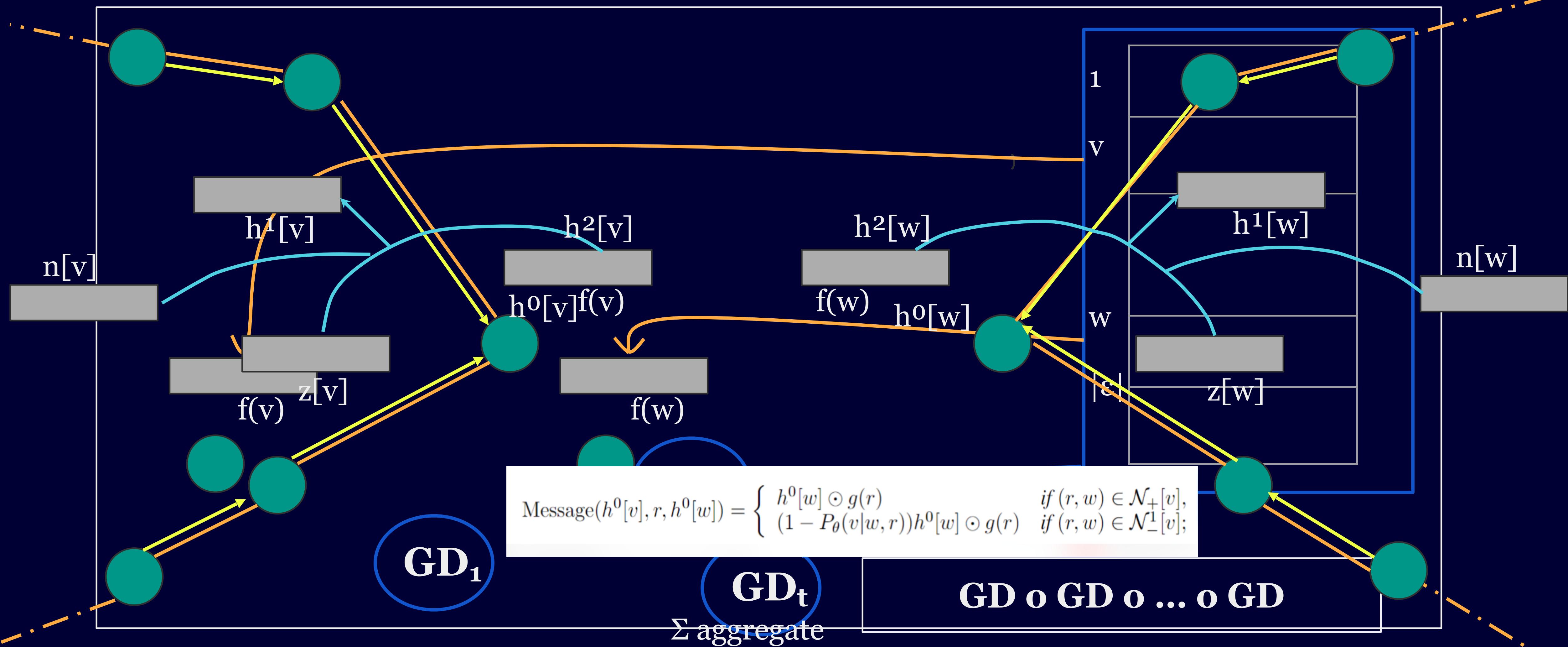
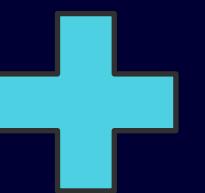


Embeddings for knowledge graph representation learning: factorization-based models

DistMult as Example



$L=2$



Implicit Message-Passing within FMs

Theorem 3.1 (Message passing in FMs). *The gradient descent operator (1) on the node embeddings of a DistMult model (4) with objective (3) and a multi-relational graph $(\mathcal{E}, \mathcal{T})$ induces a message-passing operator whose composing functions are:*

$$m^l[v, r, w] = \text{Message}(h^{l-1}[v], r, h^{l-1}[w]) = \begin{cases} h^{l-1}[w] \odot g(r) & \text{if } (r, w) \in \mathcal{N}_+[v], \\ (1 - P_\theta(v|w, r))h^{l-1}[w] \odot g(r) & \text{if } (r, w) \in \mathcal{N}_-[v]; \end{cases} \quad (8)$$

$$z^l[v] = \text{Aggregate}(\{m^l[v, r, w] : (r, w) \in \mathcal{N}[v]\}) = \sum_{(r, w) \in \mathcal{N}[v]} m^l[v, r, w]; \quad (9)$$

$$h^l[v] = \text{Update}(h^{l-1}[v], z^{l-1}[v]) = h^{l-1}[v] + \alpha z^{l-1}[v] - \beta n^{l-1}[v], \quad (10)$$

where, defining the sets of triples $\mathcal{T}^{+v} = \{(s, r, w) \in \mathcal{T} : s = v \wedge w \neq v\}$ and $\mathcal{T}^{-v} = \{(s, r, w) \in \mathcal{T} : s \neq v \wedge w \neq v\}$, $P_{\mathcal{T}^{+v}}$ and $P_{\mathcal{T}^{-v}}$ as their associated empirical probability distributions,

$$n[v] = \frac{|\mathcal{T}^{+v}|}{|\mathcal{T}|} \mathbb{E}_{P_{\mathcal{T}^{+v}}} \mathbb{E}_{u \sim P_\theta(\cdot|v, r)} \frac{\partial \Gamma(v, r, u)}{\partial h[v]} + \frac{|\mathcal{T}^{-v}|}{|\mathcal{T}|} \mathbb{E}_{P_{\mathcal{T}^{-v}}} P_\theta(v|s, r) \frac{\partial \Gamma(s, r, v)}{\partial h[v]}. \quad (11)$$

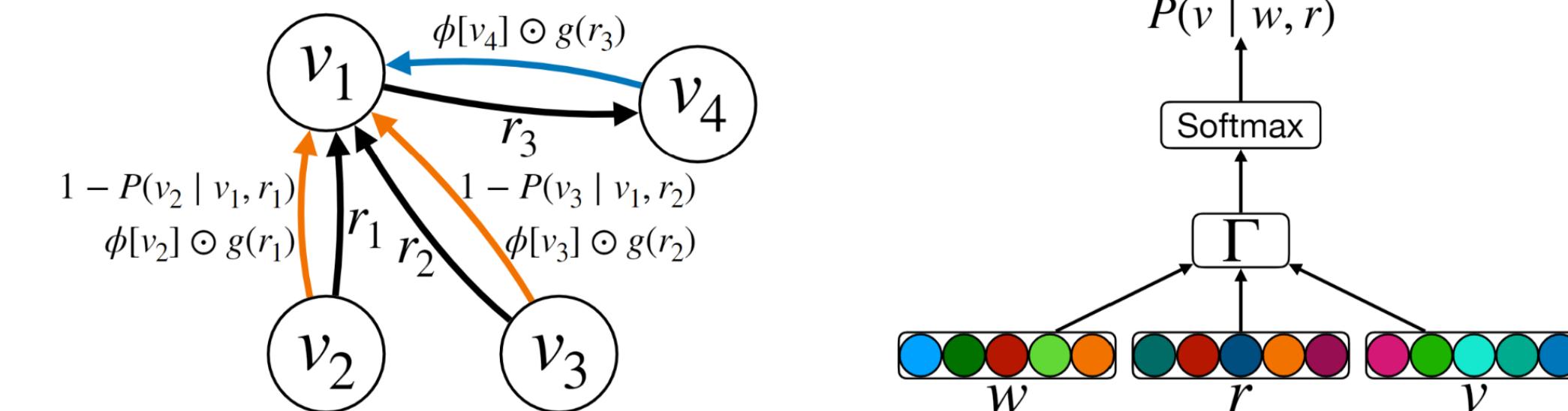
Extensions to other score functions: see lemma A.1 in the paper

Implicit Message-Passing within FMs (layman summary)

Treat the node embedding layer as a *historical memory* of node states

One *gradient descent step over the embeddings* induces one message-passing layer

- in-coming and out-going neighbourhood
- relation-aware
- global normaliser



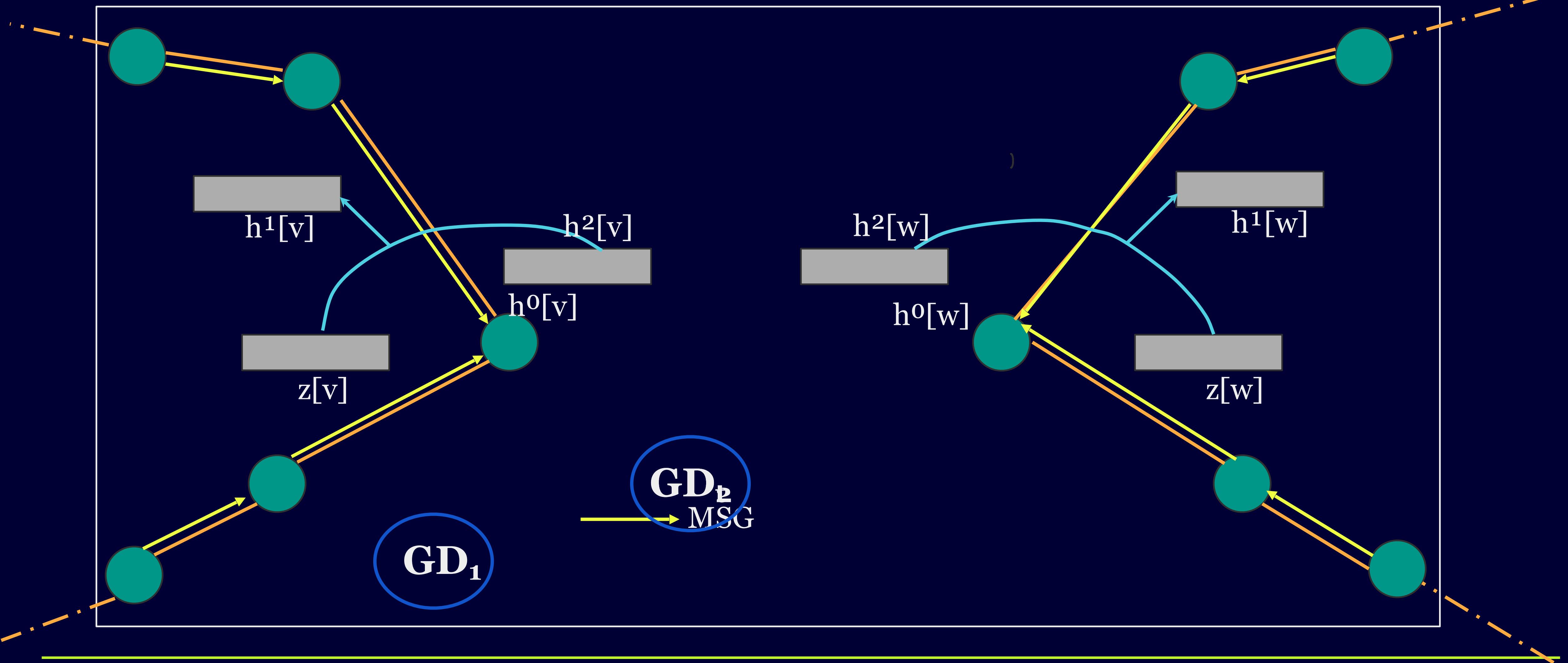
Such message-passing over data graph is “cached” into embeddings via accumulating the update vector into the history.

Tensor factorization

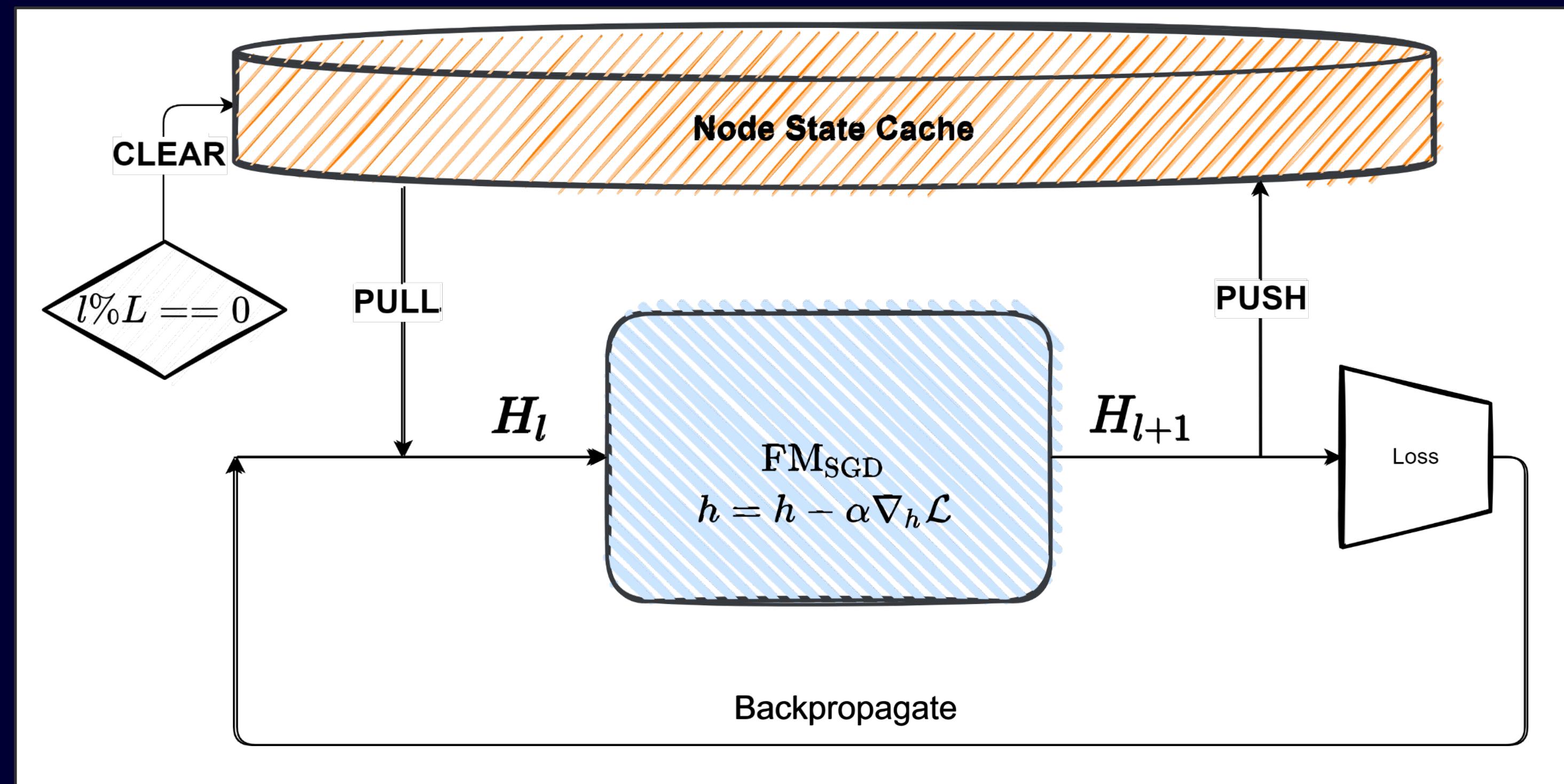
=

Graph neural networks

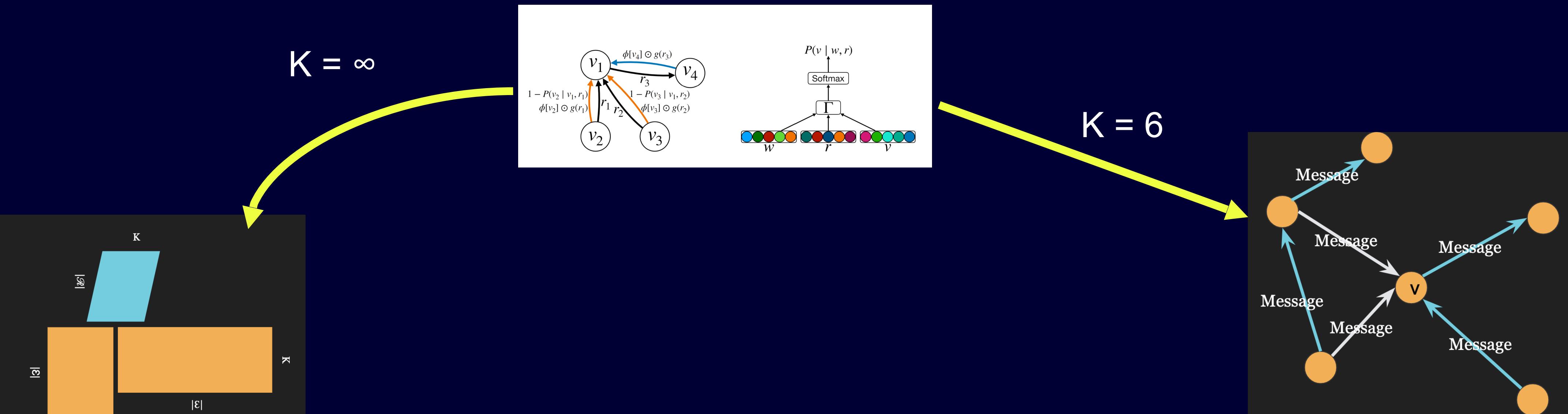
$L=2$



the message-passing rounds (some visualization of memory cleanup)



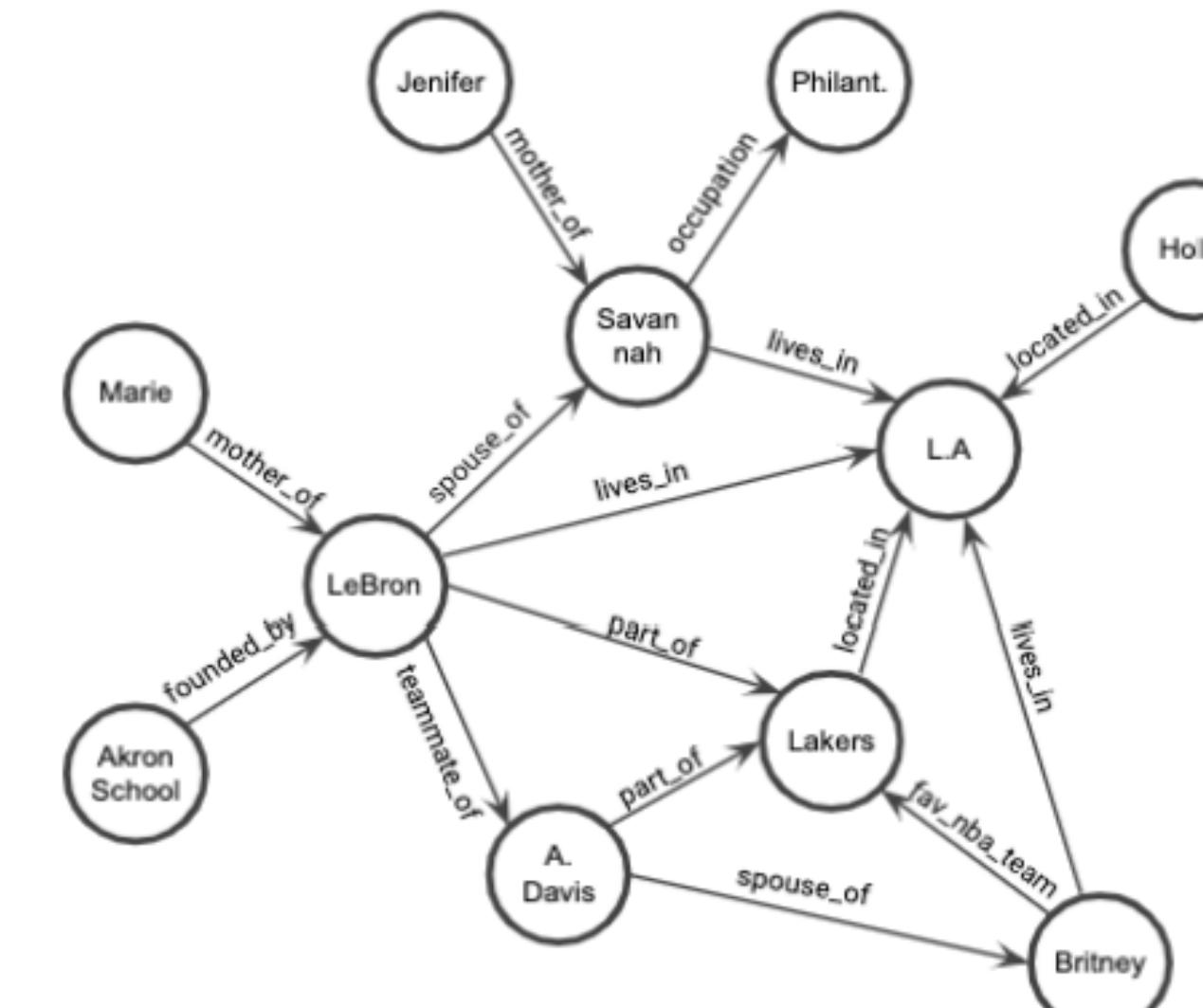
Controlling the rounds of message-passing compute



- Equivalently, “Inductivise” factorization models by truncating infinite to K message-passing
- Every reasoning is forced to use fixed number of hops neighboring information rather than memorize everything for reasoning

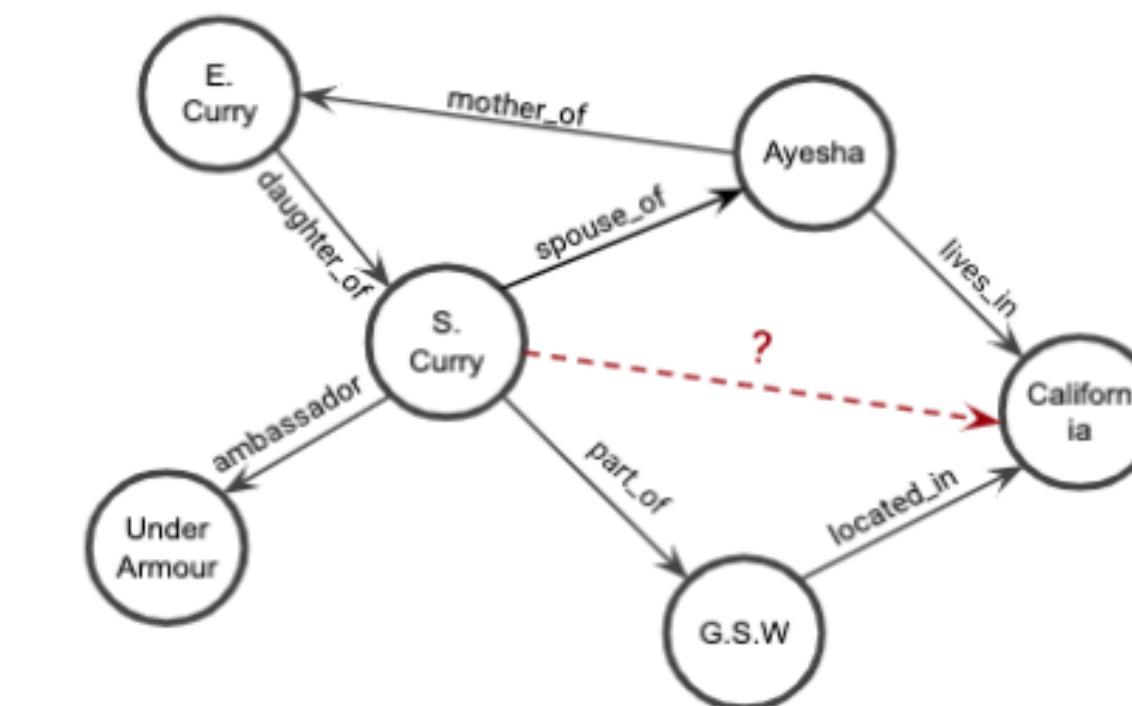
Implication

- Factorization methods are known to be transductive despite their impressive performance on link prediction
- Now we can make them inductive.
- Generalize to unseen nodes!



a. Training graph

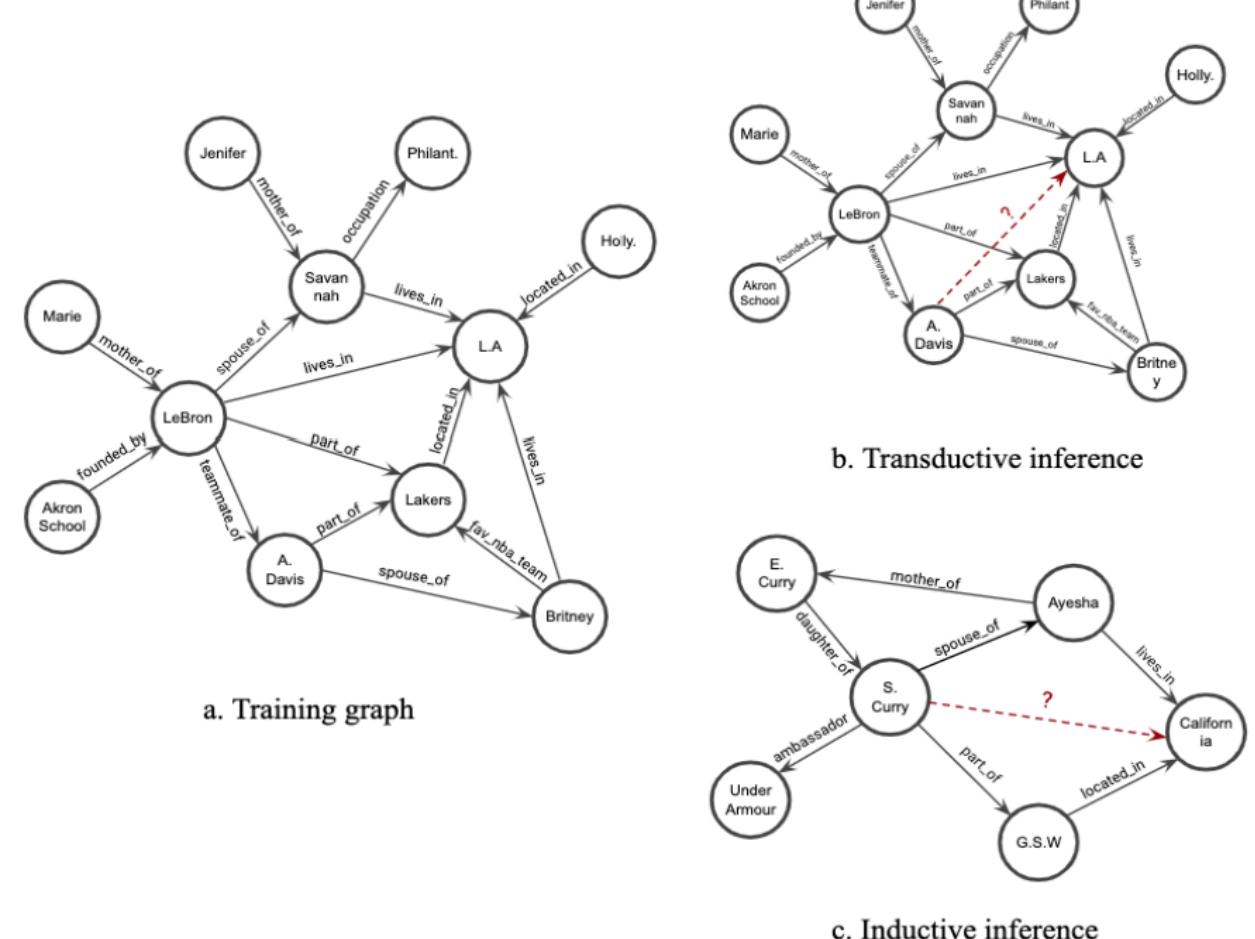
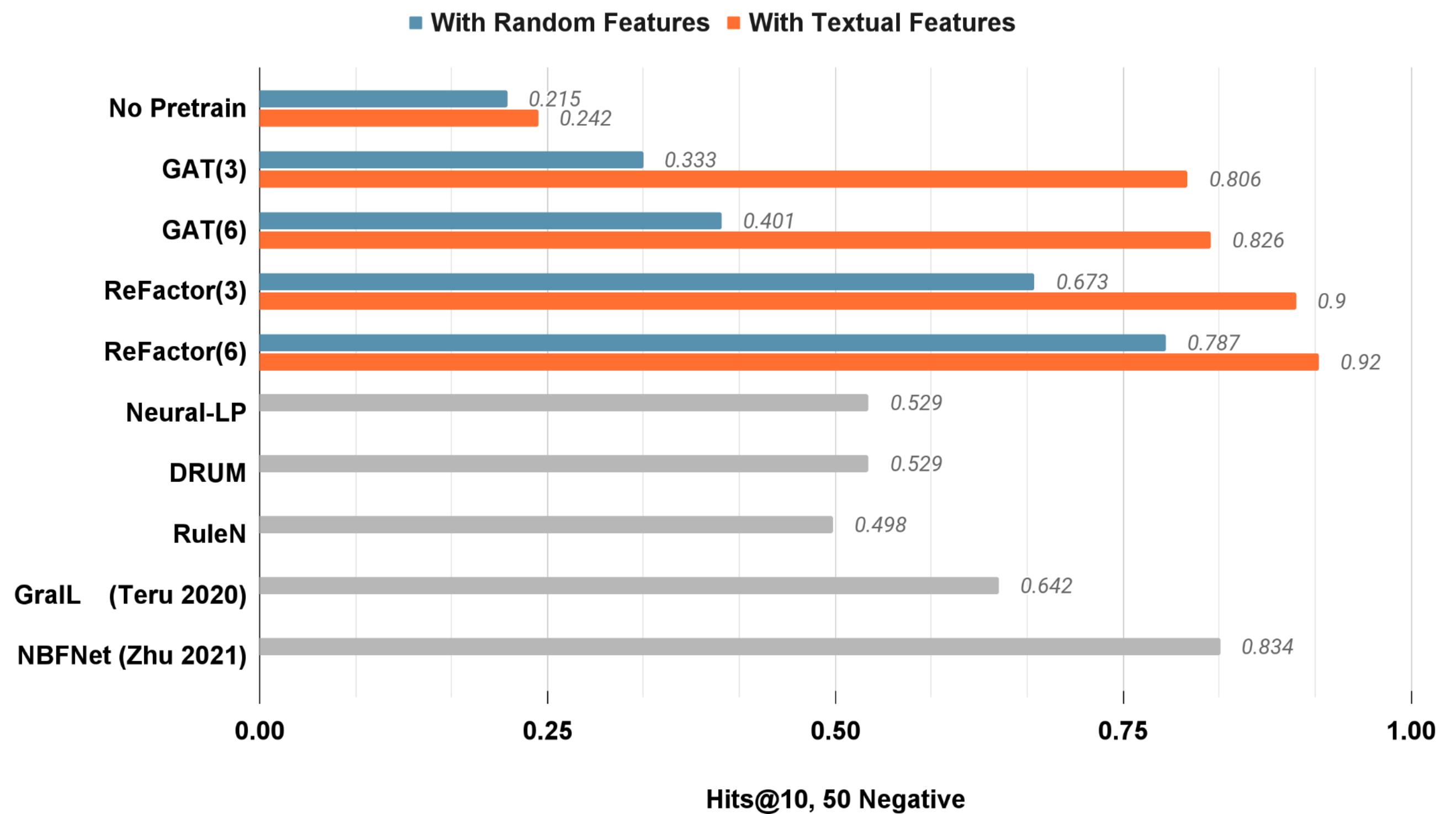
b. Transductive inference



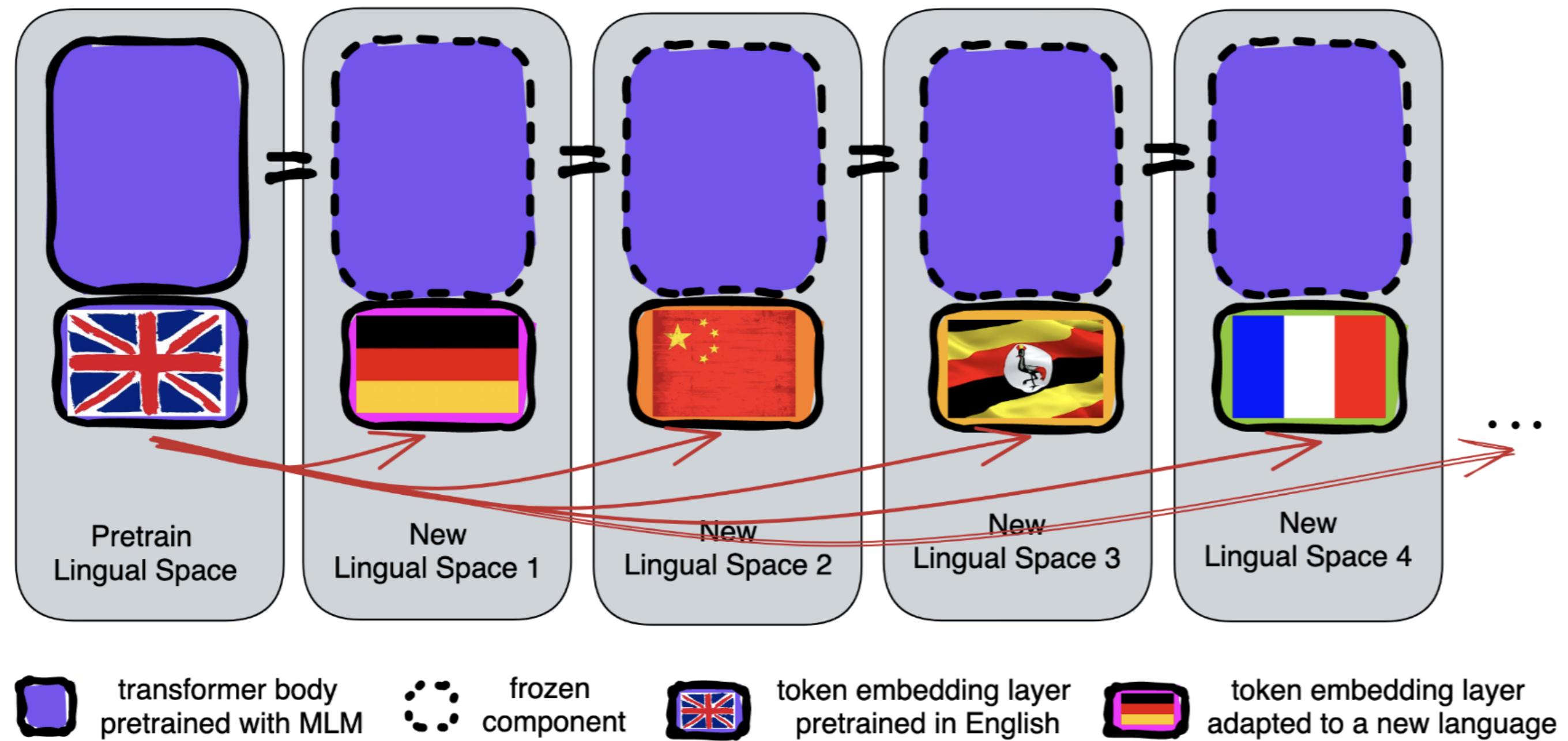
c. Inductive inference

Results

- Generalize to unseen nodes!



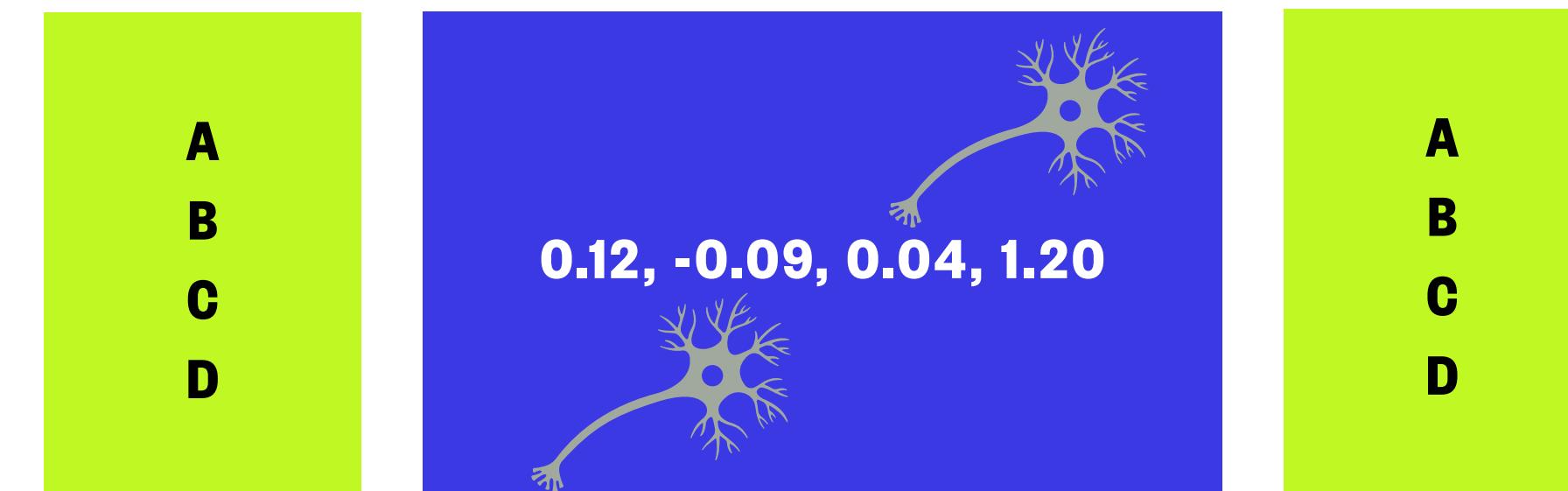
Moving to languages

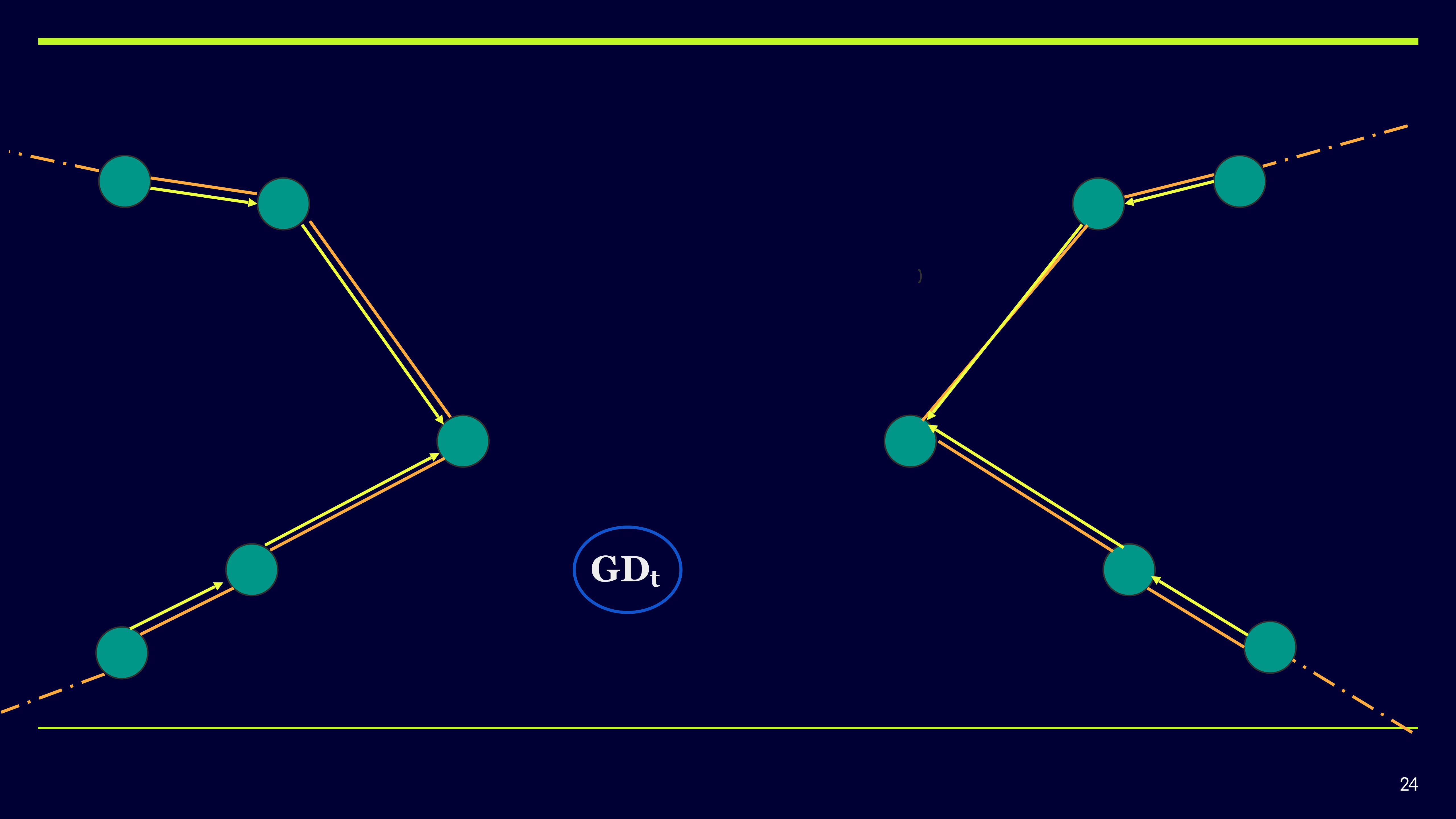


LMs struggle with generalization with under-represented languages.
Updating them to new languages can be a headache.
Ideally, we want to avoid retraining.

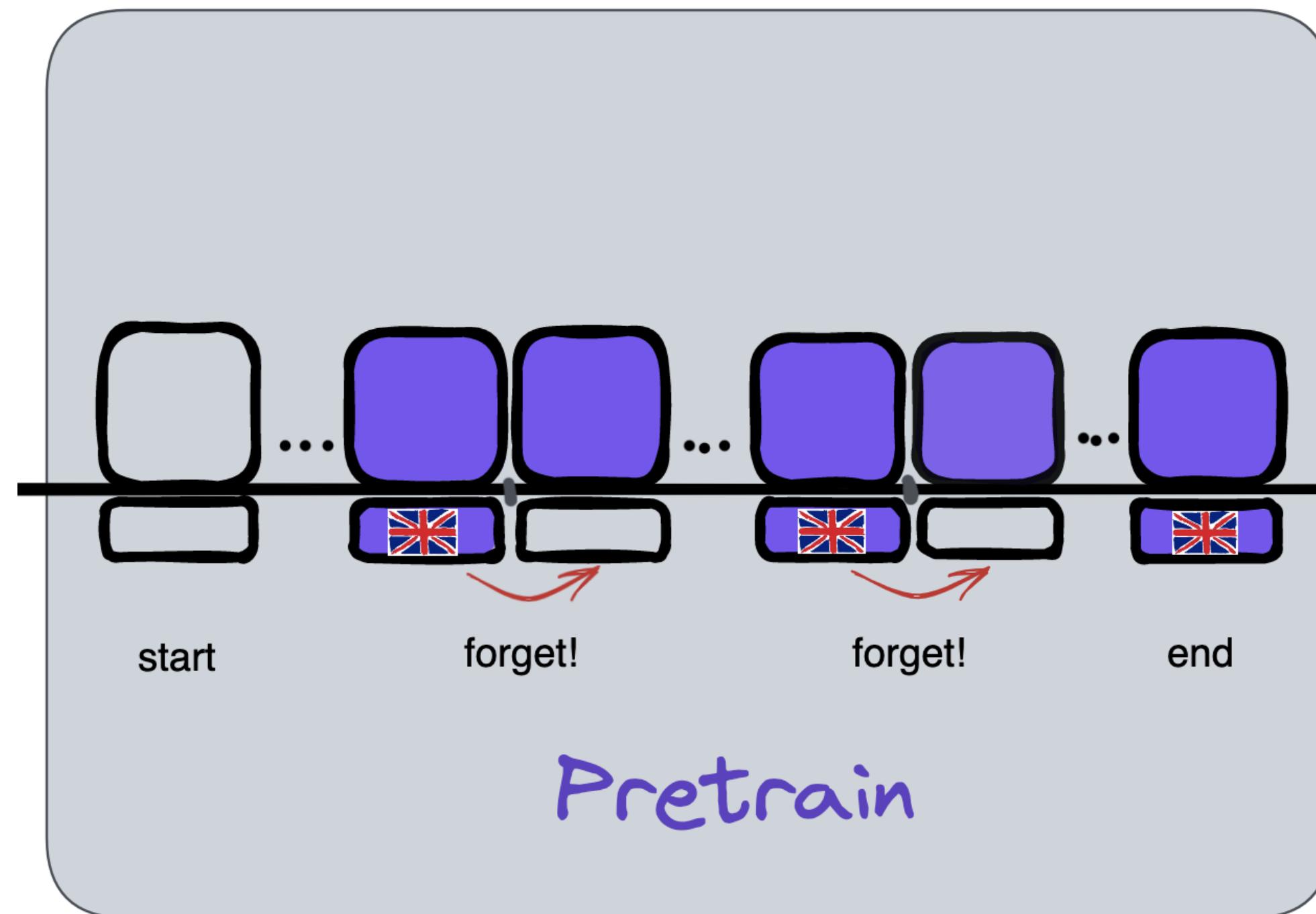
Generalising to languages

Every transformer-based language model begins with embeddings and end with (un)-embeddings.





Pretraining with Active Forgetting

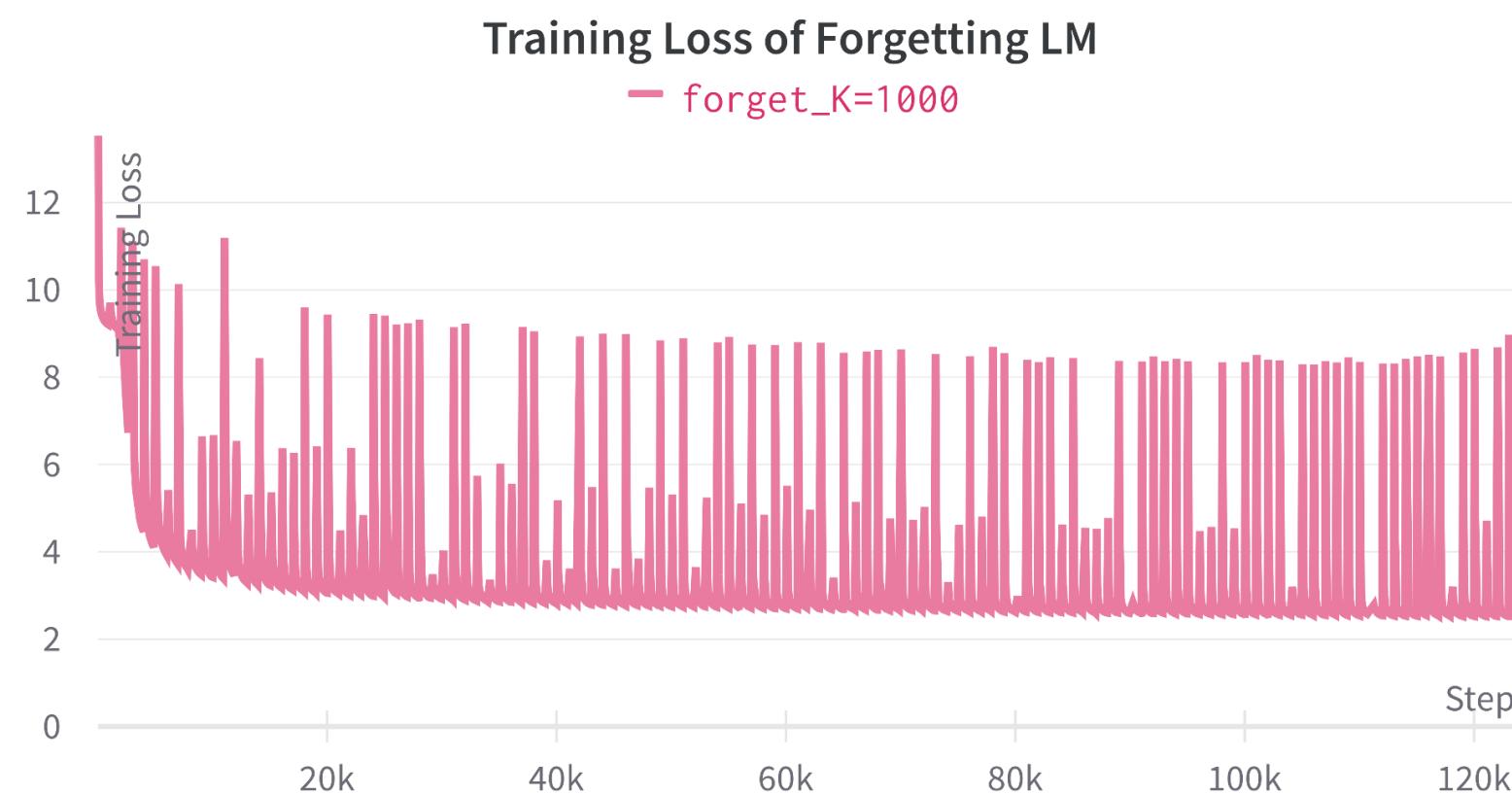


A cheap way of meta-learning LMs

- Simulating multiple language changes without actually crafting the data in new language
- Exposing **the body** to various embedding reinitialisation
- Encourage **the body** to encode more general knowledge instead of “shortcut” knowledge that is tied to certain embedding initialisation values

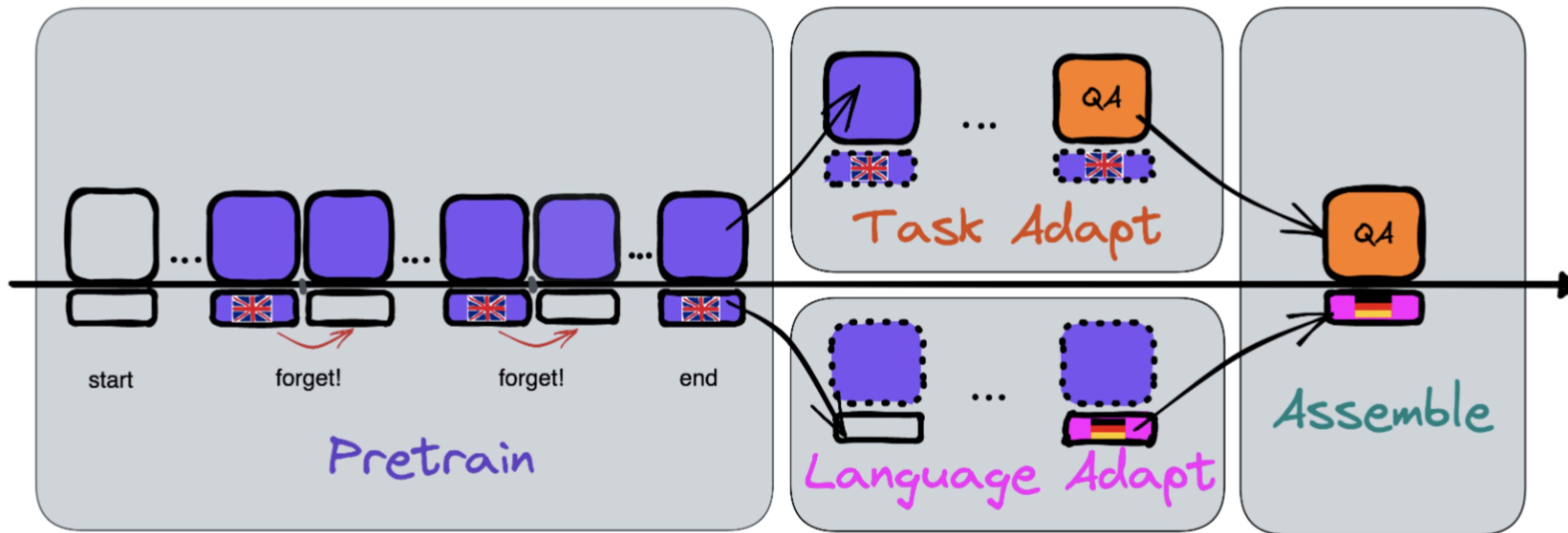
Pretraining with Active Forgetting

episodic learning curve, “spikes” when resetting



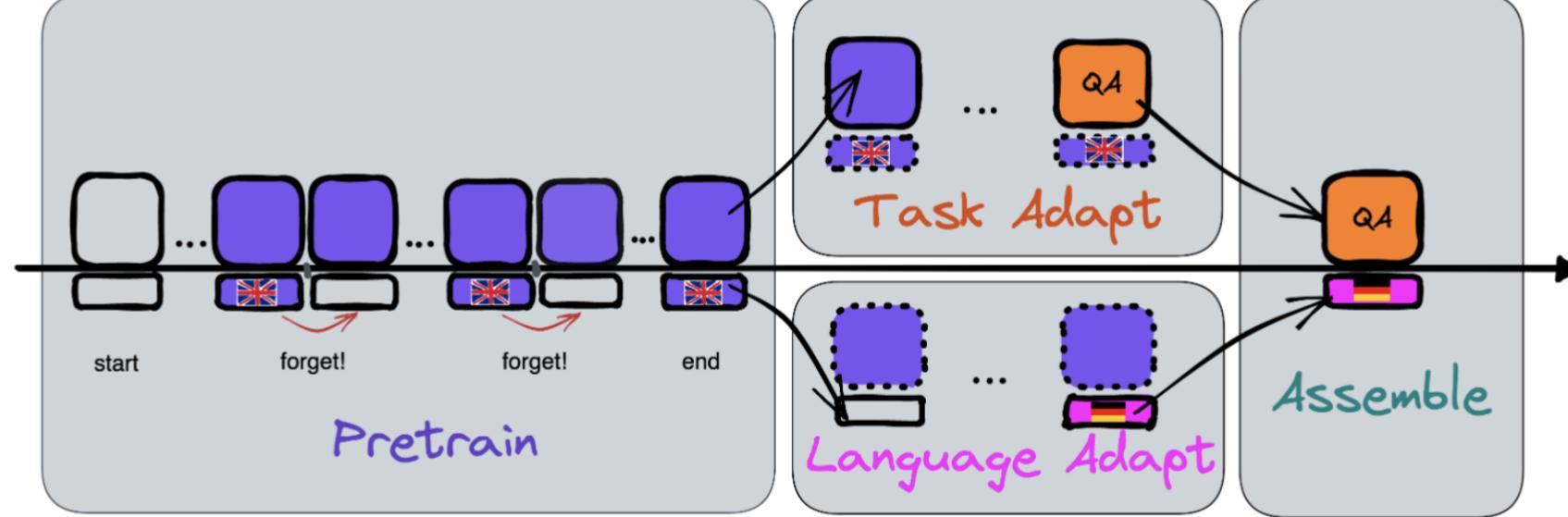
Results

- Generalising to unseen languages. Unsupervised zero-shot cross-lingual transfer!



Results

- Generalising to unseen languages with less data and compute!



On average

+21.2% on XNLI,

+33.8% on MLQA

+60.9% on XQuAD

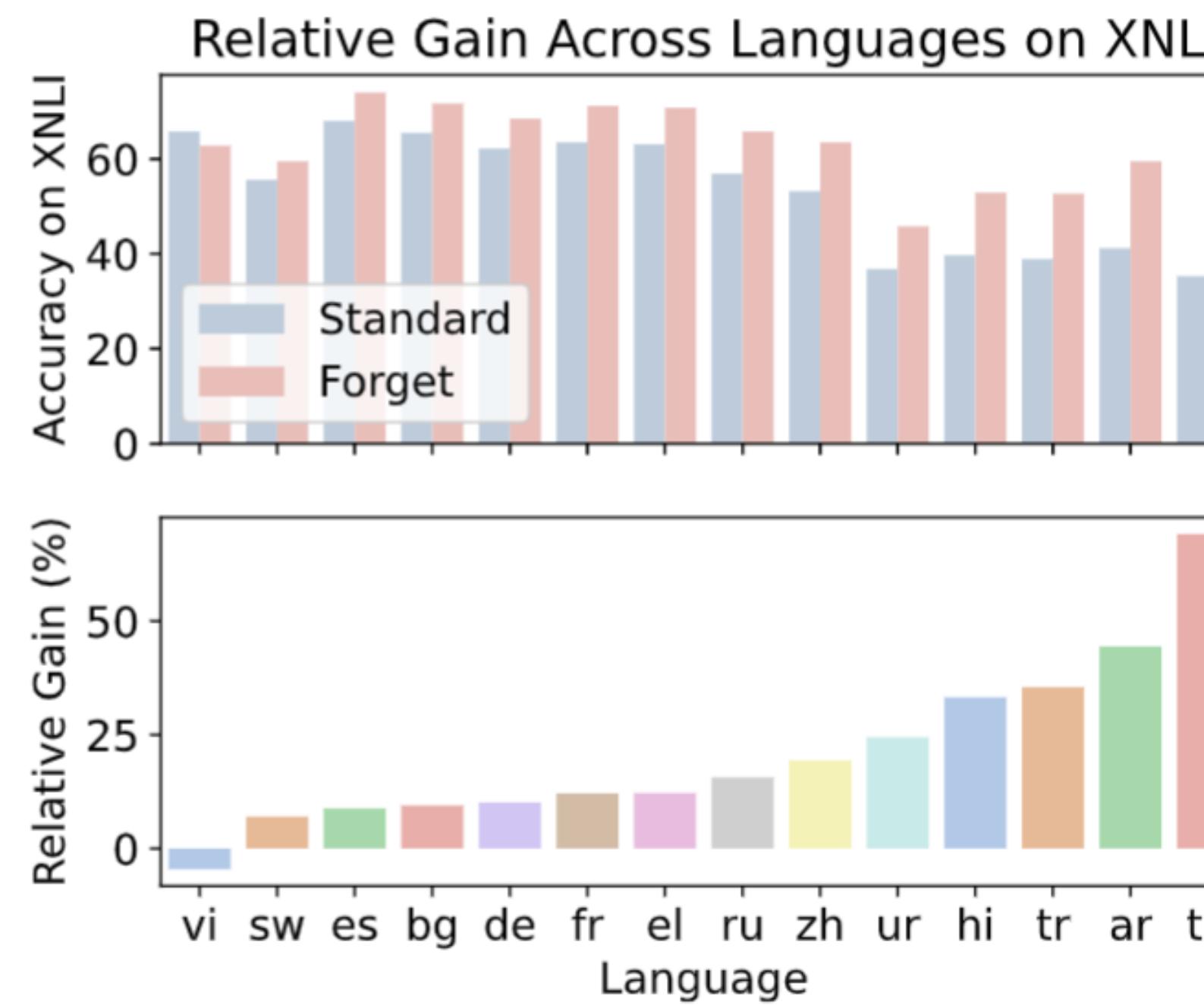
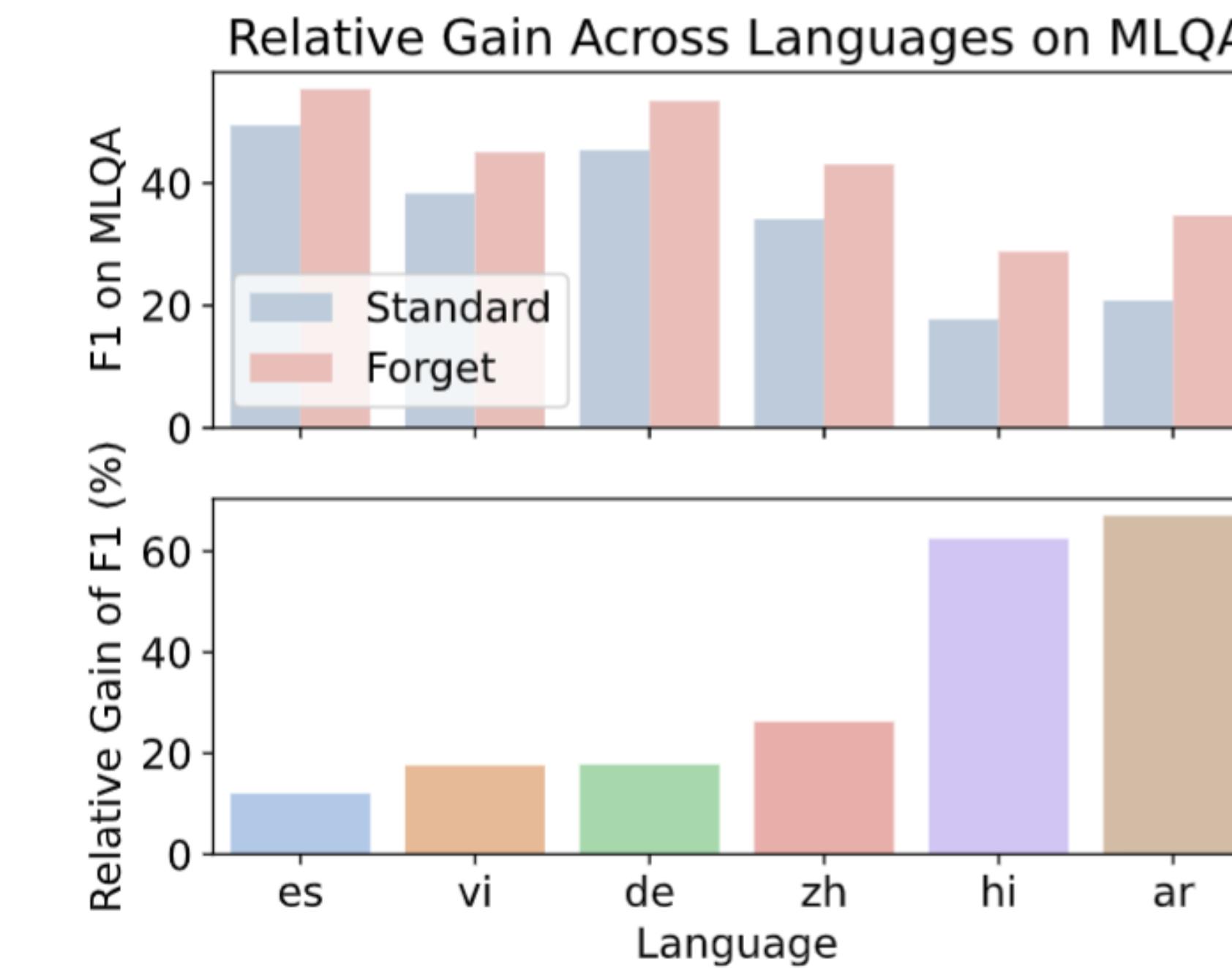
	XNLI (accuracy)	MLQA (F1)	XQuAD (F1)
Standard PLM	53.3	34.3	36.1
Forgetting PLM	62.7	43.4	49.0

+60.9%

Forgetting brings an average gain of 60.9% on XQuAD when generalizing to unseen lang

So what?

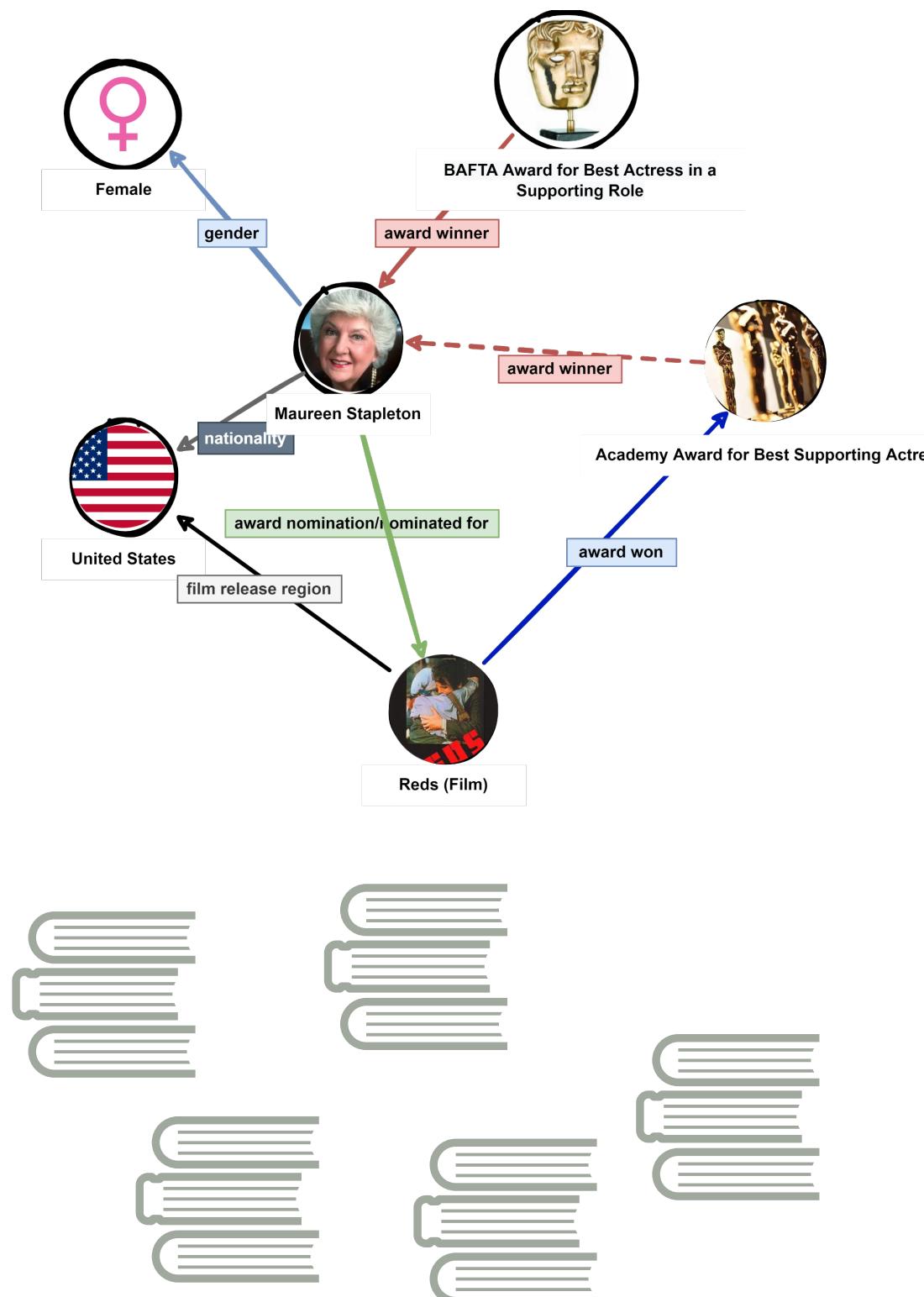
- Help low-resources languages!



Scaling increases model capacity
while forgetting improves model
plasticity -> easy to update to new
XYZ

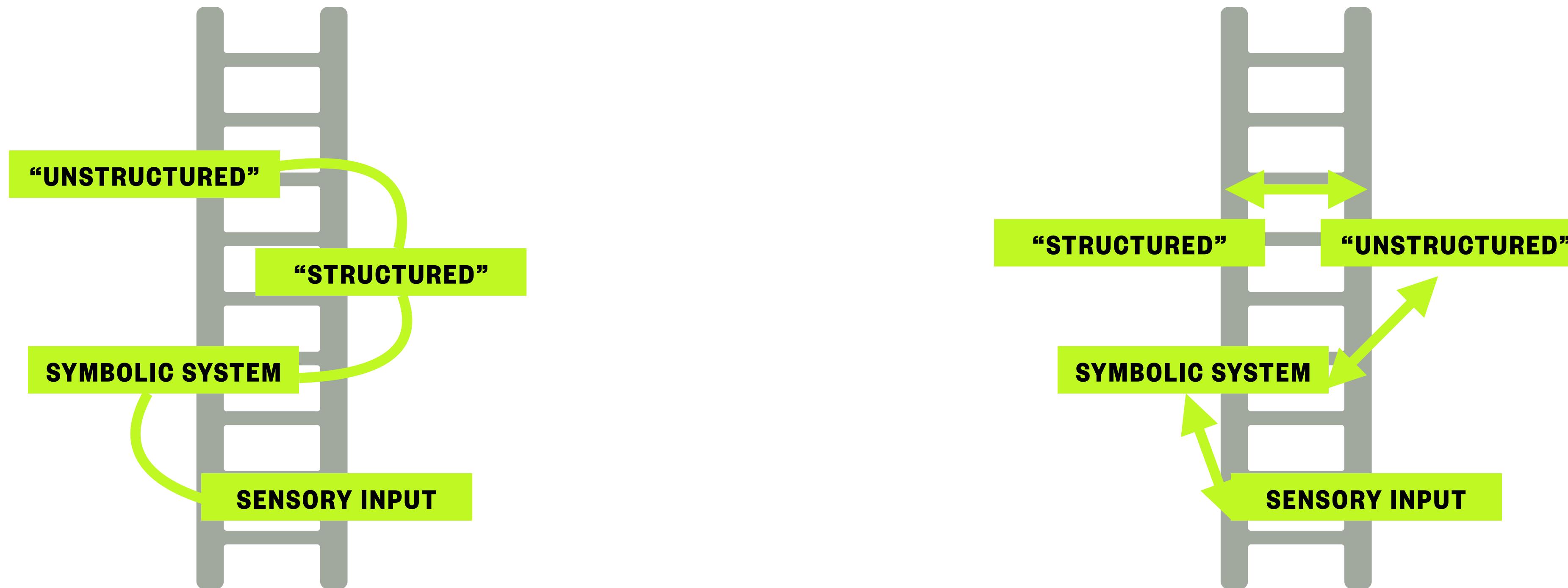
Research Vision

Structured + Unstructured



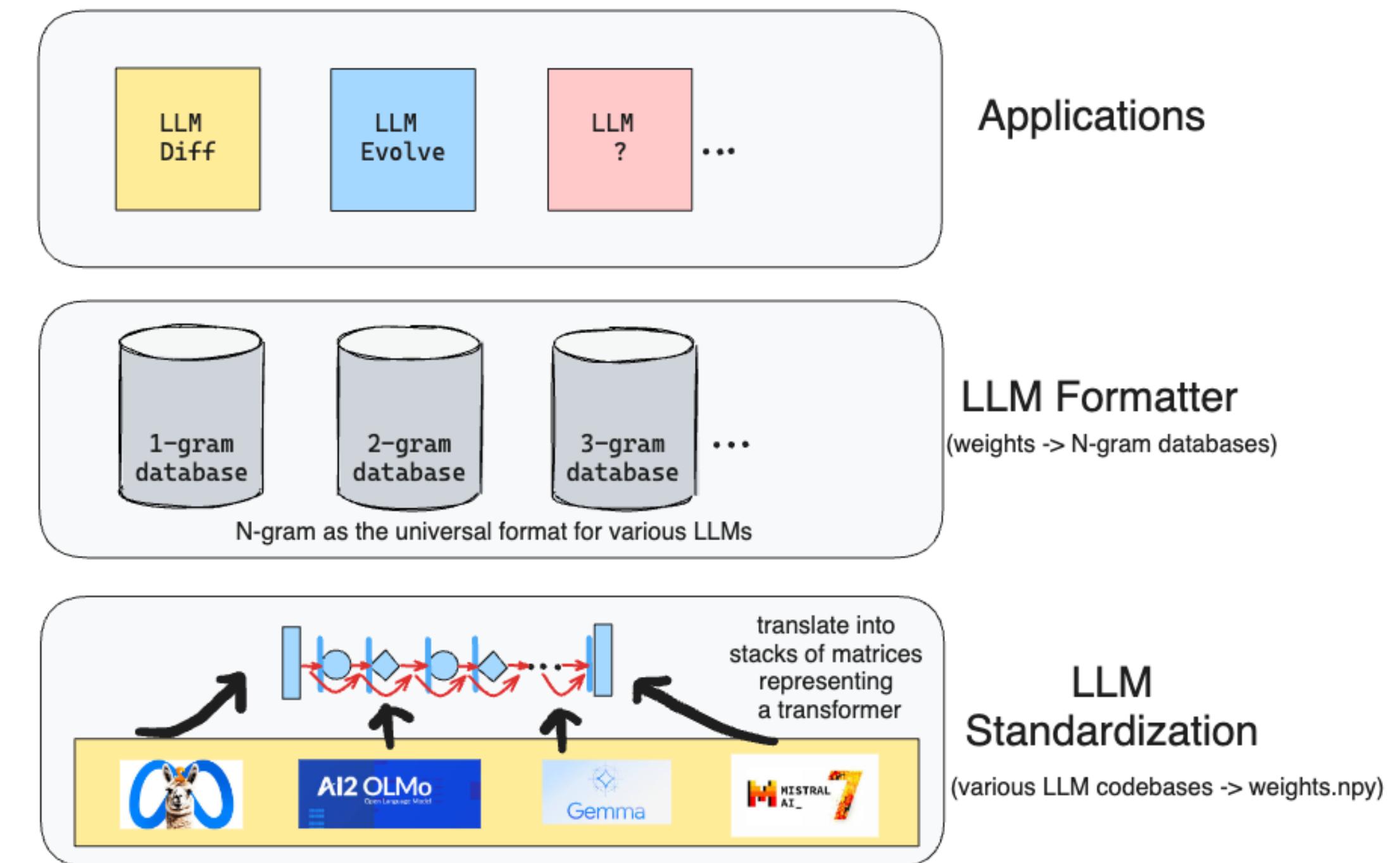
	Pros	Cons
Structured	<p>controllable (easy to update/edit/remove), interpretable, reasoning, planning</p>	construction cost, missing entries
Unstructured	<p>generative! (can create answers for any questions), ingest huge data</p>	hard to control (hallucination/toxicity), expensive

Towards more controllable AI via channelling structured and unstructured learning paradigms



Preliminary exploration (under review)

- We can identify the n-gram **structures** via *decomposing* model weights
 - Re-formatting LLMs into a universal interface of n-grams



Preliminary exploration

- We can identify the n-gram **structures** via *decomposing* model weights
 - Data-free, weights-only LLM pretraining examination

Table 1: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct step, while each row corresponds to a different rank. The table entries are the bi-grams at each step for each rank. The number of tokens seen in association with the pretraining steps is also annotated. The model gradually picks up meaningful bi-grams while starts from senseless bi-grams.

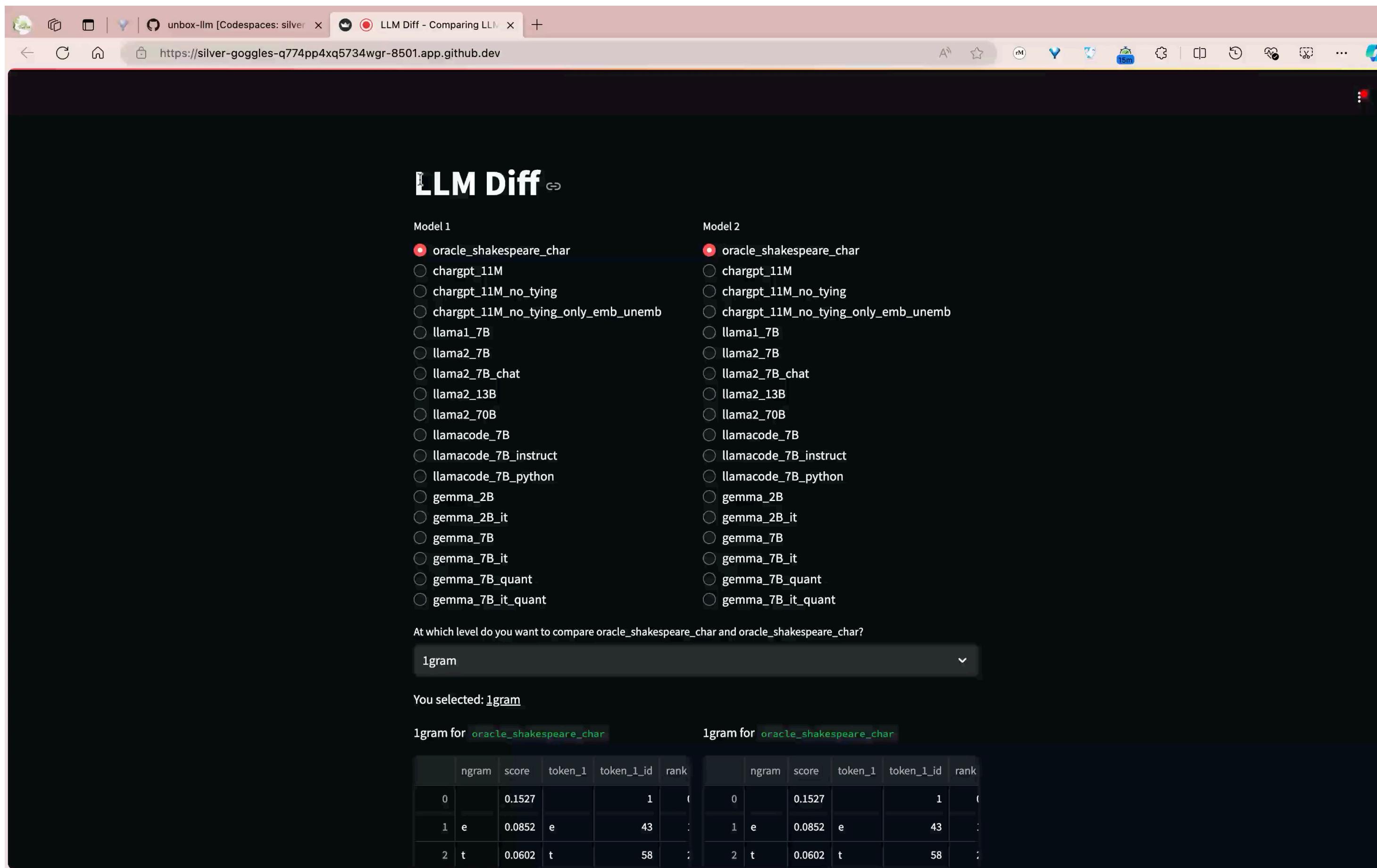
Rank	0K 0B [#steps] [#tokens]	100K	200K	300K	400K	555K
0	immortal	' s	at least	&	&	&
1	ICUirling	at least	' s	at least	its own	its own
2	ords architect	its own	&	its own	their own	their own
3	yaml Adam	okerly	your own	your own	at least	his own
4	231 next	VENT thanks	its own	their own	your own	make sure
5	clonal 条	iums	iums	more than	his own	your own
6	Charg@{	you're	you're	can't	2nd	2nd
7	avoir careless	Everything v	2nd	his own	more than	at least
8	HOLD worsening	erna already	you guys	2nd	make sure	more than
9	Horse dismant	'my	more than	make sure	can't	iums

Preliminary exploration

- We can identify the n-gram **structures** via *decomposing* model weights
 - Domain-specific LLMs will reflect their magic data mixture and point us where to update.

Rank	LLAMA2-7B	CodeLLAMA-7B	CodeLLAMA-Python-7B
0	(_more, _than)	(_like, wise)	(_like, wise)
50	(_Now, here)	(_just, ification)	(_Like, wise)
100	(_system, atically)	(_in, _case)	(_all, udes)
150	(_all, erg)	(_get, ters)	(_no, isy)
200	(_on, ions)	(któber, s)	(output, ted)
300	(_other, world)	(_all, ud)	(Object, ive)
350	(_Just, ified)	(gebiert, s)	(_as, cii)
400	(_trust, ees)	(_Protest, s)	(_can, nab)
450	(_at, he)	(_deploy, ment)	(_transport, ation)
500	(_book, mark)	(Class, room)	(Tag, ging)
550	(_from, 而)	(_access, ory)	(_personal, ized)
600	(_WHEN, ever)	(_In, variant)	(_excess, ive)
650	(_where, about)	(_I, _am)	(_Add, itional)
700	(ag, ged)	(add, itionally)	(_**, kwargs)
750	(_he, he)	(_invalid, ate)	(name, plates)
800	(_all, anto)	(div, ision)	(_select, ive)
850	(_Tom, orrow)	(_process, ors)	(_Assert, ions)
900	(_for, ays)	(_Program, me)	(blog, ger)
950	(_Bach, elor)	(_set, up)	(_can, cellation)

LLM Diff



LLM Diff

Model 1

- oracle_shakespeare_char
- chargpt_11M
- chargpt_11M_no_tying
- chargpt_11M_no_tying_only_emb_unemb
- llama1_7B
- llama2_7B
- llama2_7B_chat
- llama2_13B
- llama2_70B
- llamacode_7B
- llamacode_7B_instruct
- llamacode_7B_python
- gemma_2B
- gemma_2B_it
- gemma_7B
- gemma_7B_it
- gemma_7B_quant
- gemma_7B_it_quant

Model 2

- oracle_shakespeare_char
- chargpt_11M
- chargpt_11M_no_tying
- chargpt_11M_no_tying_only_emb_unemb
- llama1_7B
- llama2_7B
- llama2_7B_chat
- llama2_13B
- llama2_70B
- llamacode_7B
- llamacode_7B_instruct
- llamacode_7B_python
- gemma_2B
- gemma_2B_it
- gemma_7B
- gemma_7B_it
- gemma_7B_quant
- gemma_7B_it_quant

At which level do you want to compare oracle_shakespeare_char and oracle_shakespeare_char?

1gram

You selected: 1gram

1gram for oracle_shakespeare_char

	ngram	score	token_1	token_1_id	rank
0		0.1527		1	0
1	e	0.0852	e	43	1
2	t	0.0602	t	58	2

1gram for oracle_shakespeare_char

	ngram	score	token_1	token_1_id	rank
0		0.1527		1	0
1	e	0.0852	e	43	1
2	t	0.0602	t	58	2

LLM Evolve

[Preview] README.md — unb... | LLM Evolution - Compari... +

https://silver-goggles-q774pp4xq5734wgr-8501.app.github.dev

LLM Evolve

In this demo, we would like to show the evolution of [GLMo-7B](#), a recently open-sourced LLM by AllenAI. We do this by visualizing the dynamic of the top N-grams that the LLM captures across different pretraining steps.

At which level do you want to compare the checkpoints across pretraining steps?

cond2gram

You selected: cond2gram

Please select which pretraining step to inspect:

0 550000

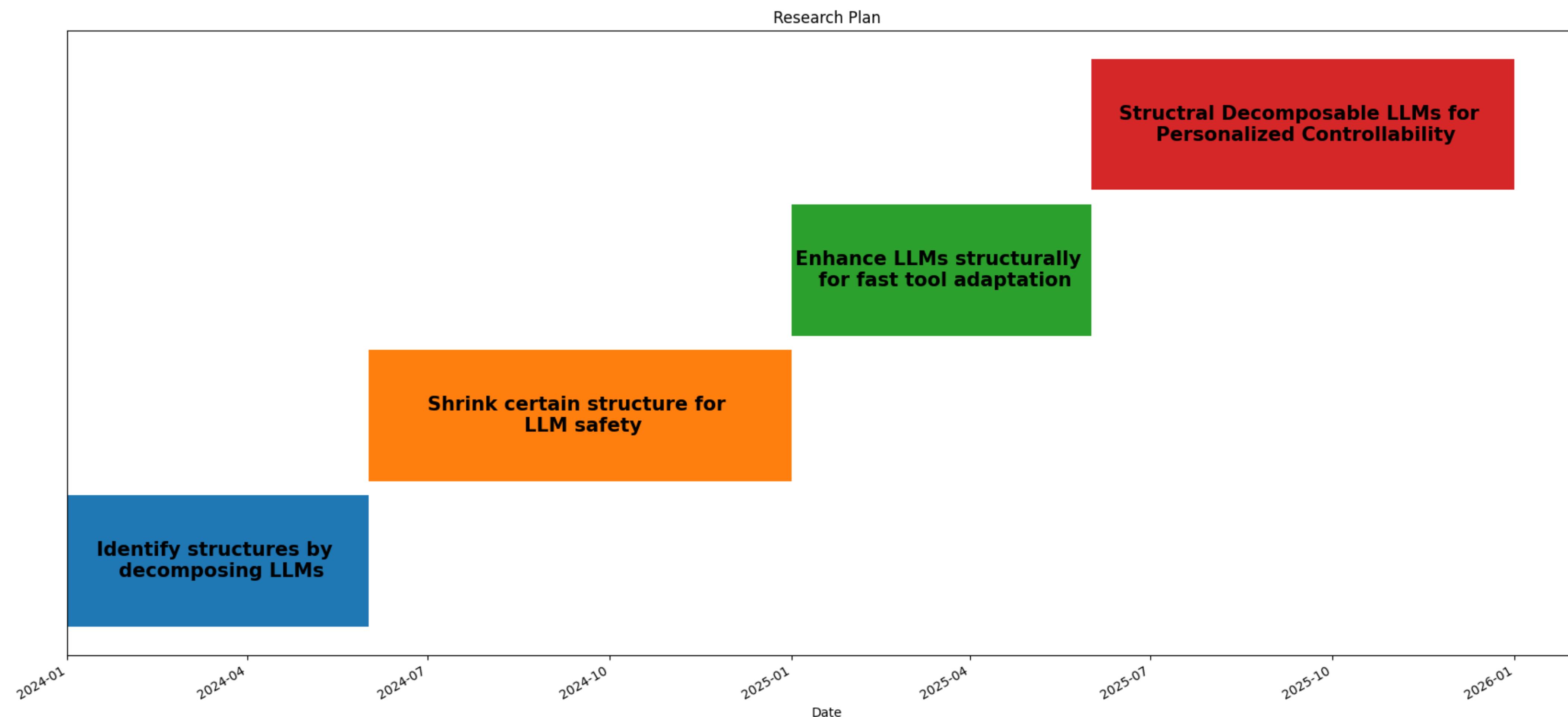
Pretraining Loss Curve

Loss

#Tokens

ngram	score	token_1	token
0 immortal	0.0056	Immortal	âç"
1 ICUirling	0.0046	ICU	irling
2 ords architect	0.0039	ords	Garch
3 yaml Adam	0.0037	yaml	âAdal
4 231 next	0.0037	231	ânext
5 clonal	0.0036	clonal	æli
6 Charg@[0.0035	Charg	@[
7 avoir careless	0.0035	avoir	âcare
8 HOLD worsening	0.0035	HOLD	âworsen
9 Horse dismant	0.0034	Horse	âdisn

Towards more controllable AI



Q & A

Thank you
