
Contents

1 Introduction 3
1.1 Building General Knowledge Engines . . . . . . . . . . . . . . . . . . 3
1.2 The Dichotomy: Structured vs. Unstructured . . . . . . . . . . . . . . . 6

1.2.1 The Structured Paradigm for Building Knowledge Engines: Ex-
emplified by Knowledge Graphs . . . . . . . . . . . . . . . . . 7

1.2.2 The Unstructured Paradigm for Building Knowledge Engines:
Exemplified by Pretrained Language Models . . . . . . . . . . 9

1.2.3 Comparing The Two Paradigms . . . . . . . . . . . . . . . . . 10
1.3 Bridging Structured and Unstructured Paradigms . . . . . . . . . . . . 12
1.4 Methodological Overview and Contributions . . . . . . . . . . . . . . . 12
1.5 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2



Chapter 1

Introduction

1.1 Building General Knowledge Engines
Humans have long been captivated by the pursuit of intelligence: seeking to understand
its emergence, improve it through training, slow its decline over time, and ultimately
replicate it in machines. This endeavour is driven by a desire to extend our innate cog-
nitive abilities across time and space, aiming to achieve more efficient and effective use
of our intellectual resources – much like how the Industrial Revolution transformed our
ability to automate and amplify our physical capabilities.

One of the defining characteristics of intelligence is its ability to process and man-
age knowledge about our realities. The human mind, as the faculty of intelligence,
can function as a general knowledge engine, capable of acquiring information from di-
verse sources, consolidating it through abstraction, retrieving it for reasoning on rele-
vant tasks, and updating it to address evolving environments. This knowledge engine
supports us across a wide spectrum of tasks, ranging from routine activities – such as
navigating daily commutes, managing personal schedules, or cooking meals – to com-
plex decision-making, like formulating trading strategies, resolving political conflicts,
diagnosing medical conditions, or writing a PhD thesis.

When developing artificial intelligence (AI), particularly with the aim of emulat-
ing human intelligence, replicating general knowledge engines becomes crucial. These
knowledge engines can serve as the backbone for many of our most impactful digital
infrastructure today, such as search engines, recommender systems, and conversational
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Figure 1.1: Illustration of how “knowledge engines” in human minds facilitate diverse
human activities and how current digital knowledge engines underpin applications such
as digital assistants, social media platforms, and recommendation systems.

agents (e.g., virtual assistants and chatbots), supporting our daily digital activities, as de-
picted by Figure 1.1. However, building general knowledge engines is not an easy task.
In fact, it has been a complicated subject and the focus of many areas of studies, span-
ning disciplines such as natural language processing, information retrieval, data mining,
machine learning, and cognitive science. Profoundly, a core challenge lies in integrating
diverse knowledge sources and updating them in real time.

To better understand this challenge, let us consider a concrete example: the develop-
ment of an AI doctor designed to mimic a human physician. We can begin by examining
the steps a human physician undergoes to acquire the necessary knowledge and skills.
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Example: The Training of a Medical Doctor

Consider Tom, a medical student, who progresses through various stages of
learning to become a proficient doctor:

1. Childhood Curiosity: As a child, Tom was attracted by the wonders of na-
ture and the human body. His fascination deepened through stories shared by
his grandfather, a seasoned doctor, who instilled in him a passion for healing.

2. Formal Education: In his school years, Tom immerses himself in medical
textbooks, which provide organized and systematic knowledge in areas such
as biology, chemistry, anatomy, pathology, and pharmacology. These re-
sources act as the foundation of his medical expertise, enabling him to build
clear connections between key concepts in the healthcare domain, forming
structured knowledge that he can repeatedly use in his later profession life.

3. Clinical Rotations: During his clinical rotations, Tom observes senior doc-
tors at work, engages in discussions about complex patient cases, and analy-
ses unstructured clinical notes. These hands-on experiences and potentially
unspoken knowledge teach him how to think critically about patient symp-
toms and interpret subtle contextual relationships among them.

We can see that Tom’s mind operates as a knowledge engine, seamlessly blending
structured knowledge sources (e.g., drug-drug interactions) for accurate recall with un-
structured insights (e.g., holistic symptom assessment notes) to guide informed clinical
decision-making. On the other hand, his natural curiosity, a form of open mindsets, con-
tinuously seeds the drive to refine, update, and expand his knowledge, ensuring that it
evolves with the changing medical landscape. Similarly, an AI system aspiring to mimic
such medical expertise must have a knowledge engine that can leverage both structured
and unstructured sources to acquire, consolidate, apply, and update knowledge dynam-
ically.

This thesis presents a scientific exploration aimed at understanding the approaches to
develop knowledge engines for AI agents and how these seemingly disparate approaches
can be unified into a framework for creating more general knowledge engines that can
adapt to previously unseen environments. At a high level, there are primarily two exist-
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ing paradigms for building general knowledge engines, the structured paradigm and
the unstructured paradigm, as detailed in Section 1.2. However, the dichotomy be-
tween these approaches diminishes, upon closer examination of their internal mecha-
nisms during training and inference, as well as their shared limitations in generalizing to
new, unseen environments. This convergence suggests a unified, integrated pathway for
constructing general knowledge engines.

The remainder of this chapter will outline the motivation and context for such unifi-
cation and integration (Section 1.2), the research objectives and questions (Section 1.3),
a brief overview of the methodology (Section 1.4), and a roadmap of the thesis structure
(Section 1.5).

1.2 The Dichotomy: Structured vs. Unstructured
The majority of human knowledge sources can be categorized into two forms: the struc-
tured and the unstructured. Historically, research on processing these two forms of
knowledge for AI systems has largely been studied in separate streams.

The earlier waves of AI features expert systems proliferated in the 1980s [Hayes-
Roth et al., 1983]. Expert systems were heavily backed by structured knowledge sources,
such as curated knowledge graphs specifying relationships among entities. In contrast,
contemporary AI advancements increasingly favour massive unstructured datasets – for
instance web data – as the foundation for building state-of-the-art AI.

In this thesis, we will refer to these two paradigms as the structured paradigm and
unstructured paradigm. We note that the transition from the structured data to unstruc-
tured data is not a binary division but rather along a spectrum of relative structuring. For
example, from the grammar perspective, coding data is more semi-structured compared
to natural language data; from the conceptual ogranisation perspective, textbook data is
more structured and organized compared to texts coming from the internet. While ac-
knowledging these intermediate forms, this thesis seeks to examine the archetypal struc-
tured and unstructured paradigms, as presented below.
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1.2.1 The Structured Paradigm for Building Knowledge Engines:
Exemplified by Knowledge Graphs

Structures are fundamentally about how different parts relate to each other and how they
assemble to represent realities – whether physical or virtual. These structures are es-
sential for humans to organize and understand the world around us. Particularly, our
world is full of physical structures, such as molecular networks, protein folding patterns,
and transportation routes. In this sense, structures allow us to efficiently categorize and
underpin various manifestations of the physical world. On the other hand, structures
can also be abstract or virtual, like social interactions, the laws governing rational rea-
soning or the hierarchical relationships among words. These types of structures help us
systematize our understanding of abstract concepts and connections.

In the history of AI, structured knowledge sources have aimed to organize such infor-
mation in predefined formats, such as knowledge graphs, databases, and other relational
structures [Wang et al., 2017]. In these formats, symbols are arranged in fixed-length
sequences governed by specific grammar, where each position holds a defined role. For
instance, in a knowledge graph, a knowledge triplet consists of three components: the
first position typically denotes the subject (or head entity), the second represents the
predicate (or relation), and the third position corresponds to the object (or tail entity)1.
To illustrate this, consider the following diagram of a knowledge triplet:

Subject Predicate Object

(diabetes, _form_, type 1)

Where in this diagram:

• The Subject (or head entity) is diabetes.

• The Predicate (or relation) is _form_.

• The Object (or tail entity) is type 1.

A collection of such knowledge triples forms a knowledge graph. For example, the di-
agram in Figure 1.2 illustrates a portion of a widely used healthcare knowledge graph,
SNOMED-CT, which is detailed in [Donnelly, 2006].

1In some cases, a relation defines a set of ordered pairs between subjects and objects.
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Figure 1.2: A medical knowledge graph showing relationships between myocardial dis-
eases and associated conditions. The triples in the knowledge graph is drawn from
SNOMED2Vec [Agarwal et al., 2019].

The structured paradigm is built around two key elements: data format and structural
representation learning. Structured knowledge is typically represented through formats
like multidimensional arrays, sparse graphs, or triplet databases, which allow for the ex-
plicit depiction of relationships and enable the analysis of logical properties such as tran-
sitivity, reflexivity, and antisymmetry. Representation learning in this context focuses
on embedding these structures into model computations using approaches like factoriza-
tion models (FMs) [Yang et al., 2016, Lacroix et al., 2018, Trouillon et al., 2016] and
message-passing graph neural networks (GNNs) [Schlichtkrull et al., 2018, Vashishth
et al., 2020, Zhu et al., 2021]. Thesemodels play a crucial role in both the automated con-
struction of large-scale structured knowledge bases and in powering downstream tasks
like question answering.

Knowledge engines built on structured paradigms excel in applications that require
interpretability, consistency, and efficient reasoning. For example, they play a central
role in serving as world models, which aim to represent reality comprehensively [LeCun,
2022]. Knowledge graphs, in particular, have been applied in a variety of domains,
including commonsense reasoning [Hwang et al., 2021], digital twins [Akroyd et al.,
2021], and text-based games [Ammanabrolu and Riedl, 2021]. These structured models
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also power some of the most widely used digital applications, such as:

• Knowledge Bases: Essential to expert systems (e.g., IBM Watson Medical).

• Search Engines: Enabling tools like Google Search.

• Recommender Systems: Underpinning platforms like YouTube.

• Social Media: Enhancing features on platforms like X.com and Instagram.

• Intelligent Assistants: Backing intelligent systems on edge devices like Siri.

1.2.2 The Unstructured Paradigm for Building Knowledge Engines:
Exemplified by Pretrained Language Models

The latest wave of artificial intelligence, particularly generative AI, marks a significant
shift toward an unstructured paradigm, exemplified by large language models. These
models ingest vast amounts of unstructured text, moving away from the traditional re-
liance on structured knowledge sources. This paradigm shift was made possible by the
Transformer architecture, which demonstrated that pretraining on large-scale unstruc-
tured datasets could lead to the generation of foundational representations [Devlin et al.,
2019, Radford et al., 2019, Brown et al., 2020].

Following the advent of Transformer models, most algorithmic advancements have
focused on improving computational efficiency, with an increasing emphasis on scaling
model size and dataset diversity, rather than the structural intricacies of data or model
architecture [Kaplan et al., 2020, Hernandez et al., 2021, Templeton et al., 2024]. The
importance of preparing structured knowledge has diminished due to its high cost and
complexity. In contrast, the process of crawling the web for diverse unstructured data
has become a far more accessible and scalable alternative.

Unstructured data, in contrast to structured data, exists in free forms where the po-
sition of symbols within a sequence does not inherently define their role. For instance,
in a sentence, the first word is not necessarily the subject, nor the last word the object.
This type of knowledge is commonly referred to as corpus, corpora, or text, and is typi-
cally represented as sequences of variable lengths. Notable sources for pretraining large
language models include:
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• Web Text: One of the most commonly used web datasets is Common Crawl’s
petabyte-scale archive ofweb data since 2008 [Crawl, 2023]. Other similar datasets
include CC100 [Conneau et al., 2020], OpenWebText [Contributors, 2019], and
RedPajama [Computer, 2023].

• Web Code Data: Datasets like Starcoder [Project, 2023], which scrape reposito-
ries from GitHub and Stack Overflow.

• High-Quality Referential Sources: PeS2o [Soldaini and Lo, 2023] for academic
data from Semantic Scholar, Project Gutenberg [Hart and Volunteers, 1971–2024]
for books, and Wikipedia [authors, 2024] for encyclopedic knowledge.

The unstructured paradigm facilitates the development of large-scale language mod-
els that serve as alternative knowledge engines. These models are increasingly recog-
nized as world models [Petroni et al., 2019, Li et al., 2021a, Hernandez et al., 2023],
demonstrating exceptional performance in domains where structured data is sparse or
unavailable. By processing unstructured data, these models have been shown to capture
implicit relationships and context, enabling a broad range of capabilities, from answering
questions to powering conversational AI systems like ChatGPT.

1.2.3 Comparing The Two Paradigms
The structured and unstructured paradigms of knowledge representation exhibit distinct
features, as summarized in Table 1.1. Therefore, they also have different advantages and
disadvantages as summarized by Table 1.2.

The structured paradigm offers significant efficiency benefits. It allows repetitive
reuse of structured data, eliminating the need to compute solutions from scratch for re-
curring tasks. It also provides stable and consistent computational outcomes, particularly
for logical reasoning tasks, such as deduction within knowledge graphs. Despite these
benefits, structured paradigms face flexibility limitations. Particularly, structures can
be restrictive, unable to fully accommodate the nearly infinite variability of real-world
phenomena and vulnerable to missing entries.

The unstructured paradigm excels in its flexibility. It can represent and learn from di-
verse, unstructured data sources, capturing nuances that structured systems might miss.
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The unstructured paradigm is particularly effective for tasks requiring generative capa-
bilities, such as answering diverse questions flexibly or producing cartoon images based
on given keywords. However, they have notable drawbacks: i) learning from unstruc-
tured data often requires starting from scratch, incurring high computational costs. ii)
model generations can be hard to control, potentially containing biased or toxic content.
iii) due to the black-box nature of end-to-end neural architectures commonly used in this
paradigm, model generations are difficult to interpret and model internal mechanisms
are less transparent to even their developers.

Table 1.1: Key distinctions between structured and unstructured paradigms in terms of
data format, architecture, and learning objective.

Structured Paradigm Unstructured Paradigm

Data Format Knowledge Graphs Free-form text

Architecture FMs, GNNs Transformer

Learning Objective Entity Prediction Language Modelling

Table 1.2: Comparison of pros and cons between structured and unstructured paradigms
for building knowledge engines.

Structured Paradigm Unstructured Paradigm

Pros • Controllable, easy to update,
remove, or edit.
• Interpretable and consistent,
supports reasoning and plan-
ning.
• Efficient for solving recurring
and similar tasks.

• Flexible, solving diverse prob-
lems.
• Generative, respondingwithout
intermediate stages.
• Efficient ingestion, minimal
data preprocessing.

Cons • High construction cost for
structured data.
• Lacks flexibility, vulnerable to
missing data.
• High search cost for large
knowledge bases.

• Expensive training and infer-
ence.
• Hard to control, prone to
hallucination and toxicity.
• Lacks interpretability and
transparency.
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1.3 Bridging Structured and Unstructured Paradigms
Despite the apparent differences between the two paradigms, this thesis seeks to bridge
them in a mechanistic way, paving the path towards a unified framework for building
general knowledge engines that can serve artificial intelligence agents in a dynamic en-
vironment.

Theoretically, unifying the two paradigms will deepen our understanding of their
modeling principles, potentially revealing common techniques that can be applied across
both structured and unstructured knowledge representations. Practically, both paradigms
currently struggle with generalizing to unseen symbols. For instance, knowledge graph
embedding models face challenges in generalizing to new entities, while pretrained lan-
guage models often fail to generalize to unseen languages. A deep understanding of the
mechanism underlying both paradigms allow us to develop new techniques that address
the generalization issue.

Concretely, in this thesis, we ask:

1. What commonalities exist between structured and unstructured paradigms, given
that both aim to build knowledge engines for AI agents? For example, can we
identify and leverage shared techniques or methodologies that are effective across
both paradigms?

2. How can we make the knowledge engines more universal? For example, how can
we make models in both paradigms generalize to unseen environments faster?

1.4 Methodological Overview and Contributions
Our methodology begins by observing that mainstream models across both structured
and unstructured paradigms share a common architectural design, which we refer to
as the Embedding Sandwich. Specifically, these models are structured with embedding
layers at both the input and output stages, enclosing a central processingmodule (referred
to as the body of the model). The input embedding layer encodes initial data into dense,
lower-dimensional representations where symbols of various granularities (e.g., words,
characters, subwords, etc.) are represented as vectors. This encoded representation is
then passed through the body (e.g., transformer layers, recurrent neural networks, or
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other architectures) that processes and transforms the information. Finally, the output
embedding layer decodes the processed representation into the model’s predicted output.

From there, our contributions are divided into two major research thrusts. The first
focuses on structure formation within model computations, which naturally emerges
from language modelling objectives, regardless of whether the input data is structured
or unstructured. The second explores the opposite force of destructuring, wherein parts
of the learned representation are periodically cleared to enable “model plasticity”, the
ability to allow the model to generalize effectively to unseen environments. These two
research branches employ distinct methodologies. In Part I, we investigate the learning
objective by reformulating models analytically and demonstrating how specific objec-
tives can lead to equivalent tensor factorizations. In Part II, we focus on learning dy-
namics, introducing active embedding forgetting as a mechanism for resetting learned
representations to promote adaptation in new environments.

Interestingly, while embeddings are often overlooked components or treated as yet
another linear layer, our research highlights their critical role in learning symbolic re-
lationships when using a language modelling objective. We show that a set of embed-
dings can store symbol interaction trajectories after trained with language modelling ob-
jectives, where parameterized inner-product computations can produce symbolic links.
These symbolic interactions can subsequently be used to recover underlying global data
structures (Chapter 2 and Chapter 3). We further propose a message-passing reinterpre-
tation of embedding layers, where embeddings are not viewed in isolation but together
with their gradient descent (GD) process (Chapter 4). GD over vector inner-products fa-
cilitates message-passing across neighbourhoods, and the vector embeddings store these
accumulated relational signals.

Our theoretical analysis reveals that the generalization bottleneck stems from infinite
message-passing within the training dataset. This insight suggests that active forgetting
of embeddings mitigates this bottleneck by promoting destructuring, allowing the other
parts of the model to focus on meaningful abstractions instead of being anchored to the
noise in embedding initialisation (Chapter 5).

In summary, rather than focusing on surface-level distinctions such as data formats or
specificmodel architectures, this thesis uncovers deeper conceptual connections between
the two paradigms. These connections are framed along two core dimensions:
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1. Structure Formation: This dimension depicts how symbolic relationships are en-
coded into model computations through language modelling objectives. The pro-
cess applies to both structured and unstructured paradigms, enabling models to
capture meaningful structures from different data formats, which are later useful
either to complete missing entries in a knowledge engine or make a black-box
knowledge engine transparent.

2. Destructuring for Generalization: This dimension addresses how regularly reset-
ting learned embeddings – actively destructuring encoded structures – helps mod-
els overcome generalization bottlenecks and adapt to previously unseen symbols.
The active destructuring helps models remain flexible and capable of continuous
learning, regardless of whether the data is structured or unstructured.

Together, these insights reveal the mechanistic role of embeddings in the learning
process, which are critical to practical tasks such as completing knowledge bases, inter-
preting large language models and enhancing their transparency, and addressing bottle-
necks imposed by fixed vocabularies for both paradigms. These findings ultimately point
toward building more general knowledge engines capable of adapting to new knowledge
graphs, processing previously unseen languages, and potentially transferring across di-
verse tasks, tool usages and domains in the future.

1.5 Thesis Roadmap
The thesis will be organized into two main parts, Part I Structure and Part II Destructure,
along with the opening and the closing. We will subsequently give an overview of these
parts in the following table (Table 1.3).
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Table 1.3: Overview of the thesis structure and chapter contributions.

Part Description

Opening Building Knowledge Engines. Introduces general knowledge en-
gines and the structured vs. unstructured paradigm divide. Presents
the overarching research goal: bridging both paradigms.

Part I Structure – The Foundation of Knowledge Engines. Language
modelling objectives induce structure in both paradigms.
Chapter 2: Language Modelling Completes Knowledge Graph
Structures. Reframes knowledge base completion as languagemod-
elling, showing how language models represent graph structure.
Chapter 3: Uncovering Interpretable Structures in Pretrained Lan-
guage Models. Proposes a method to extract interpretable latent
structures from LLMs using residual connections.

Part II Destructure – Addressing the Limits of Rigid Knowledge. Intro-
duces active forgetting to enhance model plasticity.
Chapter 4: Inductive Knowledge Graph Learning with Active For-
getting. Interprets factorization models as GNNs and proposes
REFACTOR GNNS for improved generalization.
Chapter 5: Improving Language Model Plasticity with Active For-
getting. Shows how forgetting improves adaptation in multilingual
and out-of-domain settings.

Closing Toward General Knowledge Engines. Summarizes findings, re-
flects on limitations, and outlines directions for future work.
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