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Chapter 2

Language Modelling Completes
Knowledge Graph Structures

A version of this work was previously presented at a peer-reviewed conference. Please refer to
[Chen et al., 2021] for full citation.

Knowledge bases are one of the critical infrastructures empowering various common
AI applications, including but not limited to expert systems (e.g. IBM Watson), search
engines (e.g. Google Search), recommender systems (e.g. TikTok), social media (e.g.
X.com) [Noy et al., 2019]. They represent the structured paradigm for building knowl-
edge engines from curating highly structured data, e.g. knowledge graphs, that can serve
various downstream applications. In this chapter, we show that a language modelling
objective allows us to learn better multi-relational graph representations, leading to bet-
ter structure recovery and thus can be used to complete the knowledge base automat-
ically. Specifically, we extend the entity prediction (1vsAll) objective, which are the
off-shelf choice for knowledge base completion, by incorporating relation prediction.
The new training objective contains not only terms for predicting the subject and object
of a given triple (s, p, o), but also a term for predicting the relation type – predicting
any symbol using its context i.e. its surrounding symbols in the triplet. This precisely
matches the language modelling objective, in that we can treat the triplet as a sentence,
the subject/object/predicate as the tokens, and predict the target token by modelling the
context. We analyse how this language modelling objective impacts multi-relational
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learning for KBC: experiments on a variety of datasets and models show that the ob-
jective can significantly improve entity ranking, the most widely used evaluation task
for KBC, yielding a 6.1% increase in MRR and 9.9% increase in Hits@1 on FB15k-
237 as well as a 3.1% increase in MRR and 3.4% in Hits@1 on Aristo-v4. More-
over, we observe that the proposed objective is particularly effective on highly multi-
relational datasets, i.e. datasets with many predicates, and generates better representa-
tions when larger embedding sizes are used. The code for our experiments is available
at https://github.com/facebookresearch/ssl-relation-prediction.

2.1 KnowledgeBaseCompletion asLanguageModelling?
Aiming at completing missing entries, Knowledge Base Completion (KBC), also known
as Knowledge Graph Completion (KGC), plays a crucial role in constructing large-scale
knowledge graphs [Nickel et al., 2016a, Ji et al., 2020, Li et al., 2020]. In its essence,
KBC is a task that require the model to learn the structures expressed in the data and
thereby complete the missing entries. Over the past years, most research on KBC has
been focusing on Knowledge Graph Embedding (KGE) models, which learn represen-
tations for all entities and relations in a Knowledge Graph (KG), and use them for scor-
ing whether an edge exists or not [Nickel et al., 2016a]. Numerous models and archi-
tectural innovations have been proposed, including but not limited to translation-based
models [Bordes et al., 2013], latent factorisation models [Nickel et al., 2011a, Trouillon
et al., 2016, Balazevic et al., 2019], and neural network-based models [Dettmers et al.,
2018, Schlichtkrull et al., 2018, Xu et al., 2020b]. Other more recent research has been
making complementary efforts on analysing the evaluation procedures for these KBC
models. For instance, Sun et al. [2020b] call for standardisation of evaluation protocols;
Kadlec et al. [2017], Ruffinelli et al. [2020] and Jain et al. [2020a] highlight the im-
portance of training strategies and show that careful hyperparameter tuning can produce
more accurate results than adopting more elaborate model architectures; Lacroix et al.
[2018] suggests that a simple model can produce state-of-the-art results when its training
objective is properly selected.

Taking inspiration from these findings, we explore a language modelling style train-
ing objective, where the three symbols in a triplet are all treated equally, as tokens, and
the target token is predicted by modelling the surrounding token. The main difference
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brought by this new objective is in that, aside from training models to predict the subject
and object entities for triples in a knowledge graph, we also train them to predict the
predicate, since now the predicate will simply be yet another token. This approach is
akin to using a masked language model-like training objective [Devlin et al., 2019]. As
we will elaborate, the simple change significantly improves multi-relational graph repre-
sentation learning across several KBCmodels. Empirical evaluations on various models
and datasets support the effectiveness of our new training objective: the largest improve-
ments were observed on ComplEx-N3 [Trouillon et al., 2016] and CP-N3 [Lacroix et al.,
2018] with embedding sizes between 2K and 4K, providing up to a 9.9%boost in Hits@1
and a 6.1% boost in MRR on FB15k-237 with negligible computational overhead. We
further experiment on datasets with varying numbers of predicates and find that relation
prediction helps more when the dataset is highly multi-relational, i.e. contains a larger
number of predicates. Moreover, our qualitative analysis demonstrates improved pre-
diction of some MANY-TO-MANY [Bordes et al., 2013] predicates and more diversified
relation representations.

2.2 Literature Review: Design Space of Knowledge Base
Completion

A Knowledge Graph G ⊆ E ×R× E contains a set of subject-predicate-object 〈s, p, o〉
triples, where each triple represents a relationship of type p ∈ R between the subject
s ∈ E and the object o ∈ E of the triple. Here, E and R denote the set of all entities and
relation types, respectively.

Knowledge Graph EmbeddingModels AKnowledge Graph Embedding model, also
referred to as neural link predictor, is a differentiable model where entities in E and
relation types inR are represented in a continuous embedding space, and the likelihood
of a link between two entities is a function of their representations. More formally,
KGE models are defined by a parametric scoring function ϕθ : E × R × E 7→ R, with
parameters θ that, given a triple 〈s, p, o〉, produces the likelihood that entities s and o are
related by the relationship p.
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Scoring Functions KGE models can be characterised by their scoring function ϕθ.
For example, in TransE [Bordes et al., 2013], the score of a triple 〈s, p, o〉 is given by
ϕθ(s, p, o) = −‖s+ p− o‖2, where s, p, o ∈ Rk denote the embedding representations
of s, p, and o, respectively. In DistMult [Yang et al., 2015a], the scoring function is
defined as ϕθ(s, p, o) = 〈s, p, o〉 =

∑k
i=1 sipioi, where 〈 · , · , · 〉 denotes the trilinear dot

product. Canonical Tensor Decomposition [CP, Hitchcock, 1927] is similar to DistMult,
with the difference that each entity x has two representations, xs ∈ Rk and xo ∈ Rk,
depending on whether it is being used as a subject or object: ϕθ(s, p, o) = 〈ss, p, oo〉.
In RESCAL [Nickel et al., 2011a], the scoring function is a bilinear model given by
ϕθ(s, p, o) = s⊤Po, where s, o ∈ Rk is the embedding representation of s and p, and
P ∈ Rk×k is the representation of p. Note that DistMult is equivalent to RESCAL if P
is constrained to be diagonal. Another variation of this model is ComplEx [Trouillon
et al., 2016], where the embedding representations of s, p, and o are complex vectors
– i.e. s, p, o ∈ Ck – and the scoring function is given by ϕθ(s, p, o) = <(〈s, p, o〉),
where <(x) represents the real part of x, and x denotes the complex conjugate of x. In
TuckER [Balazevic et al., 2019], the scoring function is defined as ϕθ(s, p, o) = W ×1

s ×2 p ×3 o, where W ∈ Rks×kp×ko is a three-way tensor of parameters, and s ∈ Rks ,
p ∈ Rkp , and o ∈ Rko are the embedding representations of s, p, and o. In this chapter,
we mainly focus on DistMult, CP, ComplEx, and TuckER, due to their effectiveness on
several link prediction benchmarks [Ruffinelli et al., 2020, Jain et al., 2020a].

Training Objectives Another dimension for characterising KGEmodels is their train-
ing objective. Early tensor factorisation models such as RESCAL and CP were trained
to minimise the reconstruction error of the whole adjacency tensor [Nickel et al., 2011a].
To scale to larger Knowledge Graphs, subsequent approaches such as Bordes et al. [2013]
and Yang et al. [2015a] simplified the training objective by using negative sampling: for
each training triple, a corruption process generates a batch of negative examples by cor-
rupting the subject and object of the triple, and the model is trained by increasing the
score of the training triple while decreasing the score of its corruptions. This approach
was later extended by Dettmers et al. [2018] where, given a subject s and a predicate p,
the task of predicting the correct objects is cast as a |E|-dimensional multi-label classi-
fication task, where each label corresponds to a distinct object and multiple labels can
be assigned to the (s, p) pair. This approach is referred to as KvsAll by Ruffinelli et al.
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[2020]. Another extension was proposed by Lacroix et al. [2018] where, given a subject
s and a predicate p, the task of predicting the correct object o in the training triple is cast
as a |E|-dimensional multi-class classification task, where each class corresponds to a
distinct object and only one class can be assigned to the (s, p) pair. This is referred to as
1vsAll by Ruffinelli et al. [2020].

Note that, for factorisation-based models like DistMult, ComplEx, and CP, KvsAll
and 1vsAll objectives can be computed efficiently using GPUs [Lacroix et al., 2018,
Jain et al., 2020a]. For example for DistMult, the score of all triples with subject s and
predicate p can be computed via E(s � p), where � denotes the element-wise product,
and E ∈ R|E|×k is the entity embedding matrix. In this chapter, we follow Lacroix et al.
[2018] and adopt the 1vsAll loss, so as to be able to compare with their results, and since
Ruffinelli et al. [2020] showed that they produce similar results in terms of downstream
link prediction accuracy.

Recent work on standardised evaluation protocols for KBCmodels [Sun et al., 2020b]
and their systematic evaluation [Kadlec et al., 2017, Mohamed et al., 2019, Jain et al.,
2020a, Ruffinelli et al., 2020] shows that latent factorisation basedmodels such as RESCAL,
ComplEx, and CP are very competitive when their hyperparameters are tuned prop-
erly [Kadlec et al., 2017, Ruffinelli et al., 2020]. In this chapter, we show that using
a language modelling like objective can further improve their downstream link predic-
tion accuracy.

2.3 Transforming KBC Into Language Modelling Using
Auxiliary Relation Prediction

We first recall 1vsAll, one of the typical training objectives used for learning a KBC
model [Ruffinelli et al., 2020]. In 1vsAll, KBC models are trained by maximising the
conditional likelihood of the subject s (respectively the object o), given the predicate and
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the object o (respectively the subject s) in the triple. More formally:

argmax
θ∈Θ

∑
⟨s,p,o⟩∈G

[logPθ(s | p, o) + logPθ(o | s, p)]

with logPθ(o | s, p) = ϕθ(s, p, o)− log
∑
o′∈E

exp [ϕθ(s, p, o
′)]

logPθ(s | p, o) = ϕθ(s, p, o)− log
∑
s′∈E

exp [ϕθ(s
′, p, o)],

(2.1)

where θ ∈ Θ are the model parameters, including entity and relation embeddings, and
ϕθ is a scoring function parameterised by θ. The terms Pθ(s | p, o) and Pθ(o | s, p)
correspond to predicting the subject entity s and the object entity o, respectively. These
two terms align with the entity ranking task commonly used for evaluating KBC mod-
els. However, this purely discriminative formulation restricts prediction to only the first
(subject) or third (object) positions, potentially overlooking structural signals that can
be gained by modelling task-irrelevant postions in the triple.

On the other hand, transitioning to a generative paradigm enables the model to cap-
ture more universal patterns in the underlying data distribution, despite not directly tied
to the evalution task. To leverage the advantages of both paradigms for KBC, we follow
the spirit of interpolating between generative and discriminative approaches [Bernardo
et al., 2007]. Concretely, the joint distribution Pθ(s, p, o), central to generative mod-
elling, can be factorised in three ways:

Pθ(s, p, o) = Pθ(s, p) Pθ(o | s, p)︸ ︷︷ ︸
“object view”

,

Pθ(s, p, o) = Pθ(p, o) Pθ(s | p, o)︸ ︷︷ ︸
“subject view”

,

Pθ(s, p, o) = Pθ(s, o) Pθ(p | s, o)︸ ︷︷ ︸
“predicate view”

.

(2.2)

Each factorisation offers a distinct perspective on the dependencies among entities and
relations. To benefit from fuller views on the joint distribution while maintaining the
conditional modelling structure of 1vsAll, we propose incorporating the third view –
predicate prediction – into the training objective.

Specifically, we introduce predicate (relation) prediction as an auxiliary task to ex-
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tend the standard 1vsAll training objective. The new training objective not only con-
tains terms for predicting the subject and the object of the triple – logP (s | p, o) and
logP (o | s, p) in Eq. 2.1 – but also a term logP (p | s, o) for predicting the predicate
(relation typ) p:

argmax
θ∈Θ

∑
⟨s,p,o⟩∈G

[logPθ(s | p, o) + logPθ(o | s, p) + λ logPθ(p | s, o)]

with logPθ(p | s, o) = ϕθ(s, p, o)− log
∑
p′∈R

exp [ϕθ(s, p
′, o)],

(2.3)

where λ ∈ R+ is a hyperparameter that determines the contribution of the relation pre-
diction objective; we assume λ = 1 unless otherwise specified.

This formulation can be viewed as a masked language modeling objective [Devlin
et al., 2019] over symbolic triples, where each element – subject, predicate, or object –
can be treated as a masked token predicted from the other two, with the triple functioning
as a fixed-length sentence. While it remains discriminative (i.e., we do not model the full
joint distribution or use autoregressive generation) in order to keep the strong classifica-
tion performance, the new objective allows the model to learn contextual dependencies
in all directions within a triple. This includes not only how entities depend on relation-
context pairs, but also how likely a relation is to hold between a given subject-object
pair. Compared to conventional approaches, the extra modelling on relation prediction
helps the model better differentiate between predicates, particularly those with similar
subjects or objects, or in knowledge graphs with many relation types. Section 2.4.3 will
elaborate on how the new objective improves distinguishing predicates compared to the
standard approach. Computation-wise, this new training objective adds very little over-
head to the training process, and can be easily added to existing KBC implementations;
PyTorch examples are included in Section A.1.1.

2.4 The Effects of Language Modelling on KBC Perfor-
mance

In this section, we conduct several experiments to verify the effectiveness of the language
modelling objective for KBC. We are interested in the following research questions:
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RQ1: How does the new training objective impact the results on downstream knowledge
base completion tasks across different datasets? How does the number of relation
types on the datasets affect the performance of new training objective?

RQ2: How does the new training objective impact different models? Does it benefit all
the models uniformly, or it particularly helps some of them?

RQ3: Does the new training objective produce better entity and relation representa-
tions?

Datasets. We use Nations, UMLS, and Kinship from [Kok and Domingos, 2007],
WN18RR [Dettmers et al., 2018], and FB15k-237 [Toutanova et al., 2015], which are all
commonly used in the KBC literature. As these datasets contain a relatively small num-
ber of predicates, we also experiment with Aristo-v4, the 4-th version of Aristo Tuple
KB [Mishra et al., 2017], which contains more than 1, 600 predicates. Since Aristo-
v4 has no standardised splits for KBC, we randomly sample 20, 000 triples for test and
20, 000 for validation. Table 2.1 summarises the statistics of these datasets.

Table 2.1: Dataset statistics, where |E| and |R| denote the number of entities and predi-
cates.

Dataset |E| |R| #Train #Validation #Test

Nations 14 55 1 592 100 301
UMLS 135 46 5 216 652 661
Kinship 104 25 8 544 1 068 1 074
WN18RR 40 943 11 86 835 3 034 3 134
FB15k-237 27 395 237 272 115 17 535 20 466
Aristo-v4 44 950 1 605 242 594 20 000 20 000
CoDEx-S 2 034 42 32 888 1 827 1 828
CoDEx-M 17 050 51 185 584 10 310 10 311
CoDEx-L 77 951 69 551 193 30 622 30 622

Metrics Entity ranking is the most commonly used evaluation protocol for knowledge
base completion. For a given query (s, p, ?) or (?, p, o), all the candidate entities are
ranked based on the scores produced by the models, and the resulting ordering is used
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to compute the rank of the true answer. We use the standard filtered Mean Reciprocal
Rank (MRR) and Hits@K (Hit ratios of the top-K ranked results), withK ∈ {1, 3, 10},
as metrics.

Models We use several competitive and reproducible [Ruffinelli et al., 2020, Sun et al.,
2020b] models: RESCAL [Nickel et al., 2011a], ComplEx [Trouillon et al., 2016],
CP [Lacroix et al., 2018], and TuckER [Balazevic et al., 2019]. To ensure fairness in
various comparisons, we did an extensive tuning of hyperparameters using the valida-
tion sets, which consists of 41,316 training runs in total. For the main results on all the
datasets, we tuned λ using grid-search. For the ablation studies on the number of pred-
icates and the choice of models, we set λ to 1. This reduces computational overhead
while still allowing us to examine the impact of these two factors. Details regarding the
hyperparameter sweeps can be found in Section A.1.2.

2.4.1 RQ1: Language Modelling on Different KBC Datasets
How does the proposed language modelling training objective impact knowledge base
completion for different datasets? To answer this question, we compare the perfor-
mance of training with relation prediction (the language modelling objective) and train-
ing without relation prediction (the standard entity prediction objective) on several popu-
lar KBC datasets. For the smaller datasets (Kinship, Nations andUMLS), we selected the
best model from RESCAL, ComplEx, CP, and TuckER. For larger datasets (WN18RR,
FB15k-237, and Aristo-v4), due to a limited computation budget, we used ComplEx,
which outperformed other models in our preliminary experiments.

Table 2.2 summarises the results for the smaller datasets, where" indicates train-
ing with relation (entity) prediction while% indicates training without relation (entity)
prediction. We can observe that relation prediction brings a 2% – 4% improvement for
MRR and Hits@1, as well as maintaining a competitive Hits@3 and Hits@10.

Table 2.3 summarises the results for the larger datasets. Including relation prediction
as an auxiliary training objective brings a consistent improvement on the three datasets
with respect to all metrics, except for Hits@10 on WN18RR. Particularly, relation pre-
diction leads to increases of 6.1% in MRR, 9.9% in Hits@1, 6.1% in Hits@3 on FB15k-
237 and 3.1% in MRR, 3.4% in Hits@1, 3.8% in Hits@3 on Aristo-v4. Compared to
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Table 2.2: Test performance comparison on Kinship, Nations, and UMLS. EP = Entity
Prediction; RP = Relation Prediction. We conducted an extensive hyperparameter search
over 4 different models, namely RESCAL, ComplEx, CP, and TuckER, where the model
itself is also treated as a hyperparameter. Including relation prediction as an auxiliary
training objective on these three datasets helps in terms of test MRR and Hits@1, while
remaining competitive test Hits@3 and Hits@10. More details on the hyperparameter
selection process are available in Section A.1.2.

Dataset EP RP MRR Hits@1 Hits@3 Hits@10

Kinship
% " 0.920 0.867 0.970 0.990
" % 0.897 0.835 0.955 0.987
" " 0.916 0.866 0.964 0.988

Nations
% " 0.686 0.493 0.871 0.998
" % 0.813 0.701 0.915 1.000
" " 0.827 0.726 0.915 0.998

UMLS
% " 0.863 0.795 0.914 0.979
" % 0.960 0.930 0.991 0.998
" " 0.971 0.954 0.986 0.997

WN18RR, we observe a larger improvement for FB15k-237 and Aristo-v4. One poten-
tial reason is that on FB15k-237 (|R| = 237) and Aristo-v4 (|R| = 1605) there is a more
diverse set of predicates than on WN18RR (|R| = 11). The number of predicates |R|
on WN18RR is comparatively small, and the model benefits more from distinguishing
different entities than distinguishing different relations. In other words, using lower val-
ues for λ (the weight of the relation prediction objective) is more suitable for datasets
with fewer predicates but many entities. We include ablations on |R| in Section 2.4.1.

Additionally, we conduct experiments using CoDEx, where datasets of varying sizes
are created from the same data source. The results, summarized in Table 2.4, show that
relation prediction consistently improves MRR and Hits@1 across the small, medium,
and large datasets.
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Table 2.3: Test performance on WN18RR, FB15k-237, and Aristo-v4 using ComplEx.
EP = Entity Prediction; RP = Relation Prediction. Including relation prediction as an
auxiliary training objective brings consistent improvements across the three datasets on
all metrics except Hits@10 on WN18RR. On FB15k-237 and Aristo-v4, adding relation
prediction yields larger improvements in downstream link prediction tasks. More details
on the hyperparameter selection process are available in Section A.1.2.

Dataset EP RP MRR Hits@1 Hits@3 Hits@10

WN18RR
% " 0.258 0.212 0.290 0.339
" % 0.487 0.441 0.501 0.580
" " 0.488 0.443 0.505 0.578

FB15k-237
% " 0.263 0.187 0.287 0.411
" % 0.366 0.271 0.401 0.557
" " 0.388 0.298 0.425 0.568

Aristo-v4
% " 0.169 0.120 0.177 0.267
" % 0.301 0.232 0.324 0.438
" " 0.311 0.240 0.336 0.447

Significance Testing

To show that the improvements brought by relation perturbation are significant, we run
the experiments with five random seeds and perform the Wilcoxon signed-rank test over
the metrics obtained with and without relation prediction [Wilcoxon, 1992]. For sim-
plicity, we select ComplEx as the base model, given its robust performance across mul-
tiple benchmark datasets. We evaluate the impact of relation prediction by computing
the performance difference between ComplEx models trained with and without the aux-
iliary relation prediction objective. To assess statistical significance, we test the null
hypothesis that the median of these differences is less than or equal to zero – i.e., that
incorporating relation prediction does not improve performance over the standard 1vsAll
objective.

Table 2.5 summarises the result. We can observe that almost all p-values are roughly
0.03, which means that we can reject the null hypothesis at a confidence level of about
97%. The new training objective that incorporates relation prediction as an auxiliary
training objective significantly improves the performance of KBC models except for
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Table 2.4: Test performance comparison on CoDEx-S, CoDEx-M and CoDEx-L using
ComplEx. EP = Entity Prediction; RP = Relation Prediction. Relation prediction im-
proves most metrics. Details in Section A.1.2.

Dataset EP RP MRR Hits@1 Hits@3 Hits@10

CoDEx-S
" % 0.487 0.441 0.501 0.580
" " 0.488 0.443 0.505 0.578

CoDEx-M
" % 0.366 0.271 0.401 0.557
" " 0.388 0.298 0.425 0.568

CoDEx-L
" % 0.301 0.232 0.324 0.438
" " 0.311 0.240 0.336 0.447

Table 2.5: Wilcoxon signed-rank test for ComplEx-N3 on several datasets. For each
dataset and metric, we report the corresponding statistics – i.e. the sum of ranks of pos-
itive differences – and the p-value as (statistics, p-value).

Dataset MRR Hits@1 Hits@3 Hits@10

WN18RR (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (3.0, 0.76740)
FB15k-237 (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125)
Aristo-v4 (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125)

Hits@10 on WN18RR.

Ablation on the Number of Predicates

As previously discussed, relation prediction brings different impacts toWN18RR, FB15k-
237, and Aristo-v4. Since a notable difference between these datasets is the number of
predicates |R| (1, 605 for Aristo-v4 and 237 for FB15k-237, while only 11 forWN18RR),
we would like to determine the impact of perturbing relations with various |R|. In order
to achieve this, we construct a series of datasets with different |R| by sampling triples
containing a subset of the predicates from FB15k-237. For example, to construct a
dataset with only five predicates, we first sampled five predicates from the set of 237
predicates and then extracted triples containing these five predicates as the new dataset.
In total, we have datasets with |R| ∈ [5, 25, 50, 100, 150, 200] predicates. To address the
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Figure 2.1: Relative changes between ComplEx trained with and w/o Relation Prediction
on datasets with varying numbers of predicates |R|. We experimented with 3 random
seeds. Larger bars mean more variance. Relative changes were computed with (m+ −
m−)/m−, wherem+ andm− denote the metric values with and w/o relation prediction.
A clear downward trend can be observed for datasets with |R| < 50 while 2% − 4%
clear increases in MRR, Hits@1, and Hits@3 are shown where |R| > 50.

noise introduced in predicate sampling during datasets construction, we experimented
with three random seeds. For convenience, we set the weight of relation prediction λ to
1 and performed a similar grid-search over the regularisation and other hyperparameters
to ensure that the models were regularised and trained appropriately with the different
amounts of training and test data points.

Results are summarised in Figure 2.1. As shown in the right portion of Figure 2.1,
predicting relations helps datasets with more predicates, resulting in a 2%–4% boost in
MRR, Hits@1, and Hits@3. For datasets with fewer than 50 predicates, there is con-
siderable fluctuation in the relative change as shown in the left portion of the figure –
but a clear downward trend. These results verify our hypothesis that relation prediction
brings benefits to datasets with a larger number of predicates. Note that we did not tune
the weight of relation prediction objective λ (and fixed it to 1), and this choice might
have been suboptimal on datasets with a fewer number of predicates.

33



2.4.2 RQ2: Language Modelling on Different KBC Models

Table 2.6: Test performance comparison on FB15k-237 across 4 different models: CP,
ComplEx, RESCAL, and TuckER. We set the weight of relation prediction to 1 and per-
formed a grid search over hyperparameters. More details are available in the appendix.
While relation prediction seems to help all 4 models, it brings more benefit to CP and
ComplEx compared to TuckER and RESCAL.

Model Relation Prediction MRR Hits@1 Hits@3 Hits@10

CP
% 0.356 0.262 0.392 0.546
" 0.366 0.274 0.401 0.550

ComplEx
% 0.366 0.271 0.401 0.557
" 0.382 0.289 0.419 0.568

RESCAL
% 0.356 0.266 0.390 0.532
" 0.359 0.271 0.395 0.533

TuckER
% 0.351 0.260 0.386 0.532
" 0.354 0.264 0.388 0.535

To measure how incorporating relation prediction (to induce a language modelling
objective) influences the downstream prediction accuracy of KBC models, we run ex-
periments on FB15k-237 with several models – namely ComplEx, CP, TuckER, and
RESCAL. For simplicity, we set the weight of relation prediction λ to 1. As shown in
Table 2.6, including relation prediction as an auxiliary training objective brings consis-
tent improvement for all models. Notably, up to a 4.4% and a 6.6% increase in Hits@1
can be observed respectively for CP and ComplEx. For TuckER and RESCAL, the im-
provements brought by relation perturbation are relatively small. This may be due to the
fact that we had to use smaller embedding sizes for TuckER and RESCAL, since these
models are known to suffer from scalability problems when used with larger embedding
sizes. The ablation on embedding sizes of the models follows after this paragraph. As
for the computational cost, the primary overhead arises from calculating P (p | s, o).
This increases the total computation to approximately 1.5× that of the original objec-
tive, which only involves P (s | p, o) and P (o | s, p). When using a GPU, the dominant
cost typically lies in matrix multiplications over all entities in the vocabulary, which is
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largely determined by the choice of model. For instance, models such as TuckER and
RESCAL are more computationally intensive than CP and ComplEx. As a result, the
overall training time remains largely unchanged after incorporating relation prediction.
In our experiments, adopting the new loss led to only a 2% average increase in per-epoch
training time, although more epochs may be needed to reach convergence.

Ablations on Embedding Size

In our experiments, increasing the embedding size of the model leads to better perfor-
mance. However, there might exist a saturation point where larger embedding sizes stop
boosting the performance. We are interested in how perturbing relations will impact the
saturation point and which embedding sizes benefit most from it. Figure 2.2 shows the
relationship between the embedding size and the MRR for CP on FB15k-237. At small
embedding sizes, perturbing relations makes little difference. However, it does help CP
with larger embedding sizes and delays the saturation point. As we can see, the slope of
the blue curve is steeper than the red one, which bends little between an embedding size
of 1,000 and an embedding size of 4,000. We can thus observe that perturbing relations
leaves more headroom to improve the model by increasing its embedding sizes.

2.4.3 RQ3: Qualitative Analysis of Entity and Relation Represen-
tations

In our experiments, we observe that relation prediction improves the link prediction ac-
curacy for MANY-TO-MANY predicates, which are known to be challenging for KBCmod-
els [Bordes et al., 2013]. Table 2.7 lists the top 10 predicates that benefit most from
relation prediction. We rank the predicates by averaging the associated MRR of (s, p, ?)
and (?, p, o) queries. Table A.7 and Table A.8 list the top 20 queries of (s, p, ?) and
(?, p, o) that are improved most by relation prediction. We can see that relation pre-
diction helps the queries like “Where was film Magic Mike released?”, “Where was
Paramount Pictures founded?”, “Which person appear in the film The Dictator 2012?”,
“Which places are located in UK?”, and “Which award did Vera Drake win?”.

To intuitively understand why the objective helps with these predicates, we ran t-SNE
over the learned entity and predicate representations. Reciprocal predicates are also in-
cluded in the t-SNE visualisations. We set the embedding size to 1,000, and use N3
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Figure 2.2: Hits@1 versus embedding size for CP on FB15k-237, each point represents
a model trained with some specific embedding size with (blue) / -out (red) perturbing
relations. The smallest embedding size is 25.

Figure 2.3: t-SNE visualisations for ComplEx embeddings, trained with relation predic-
tion (left) and without relation prediction (right). Red points and blue points correspond
to predicates and entities respectively. Dashed boxes highlight different clusters.
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Table 2.7: Top 10 predicates that are improved most by relation prediction.

/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position
/sports/sports_team/roster./baseball/baseball_roster_position/position
/location/country/second_level_divisions
/tv/tv_producer/programs_produced./tv/tv_producer_term/program
/olympics/olympic_sport/athletes./olympics/olympic_athlete_affiliation/olympics
/award/award_winning_work/awards_won./award/award_honor/honored_for
/music/instrument/family
/olympics/olympic_games/sports
/base/biblioness/bibs_location/state
/soccer/football_team/current_roster./soccer/football_roster_position/position

regularisation. Hyperparameters were chosen based on the validation MRR. We run t-
SNE for 5,000 steps with 50 as perplexity. As we can see from Figure 2.3, there are more
predicate clusters in the t-SNE visualisation for relation prediction compared to without
relation prediction. This demonstrates relation prediction helps the model distinguish
between different predicates: Most predicates are separated from the entities (the pink
region) while some predicates with similar semantics or subject-object contexts form a
cluster (the red region); There are also a few predicates, which are not close to their pred-
icate counterparts but instead close to highly related entities (the green region). Table 2.8
lists three example predicates for each region. Though there can be information loss dur-
ing the process of projecting high-dimensional embedding vectors into two-dimensional
space, we hope this visualisation suggests how relation prediction helps to learn more
diversified predicate representations.

2.5 Discussion
Limitations. We mainly focus on simple factorisation-based models. Future work
should consider analysing the proposed objective for more complex KBC models, such
as graph neural network-based KBC models, and on more datasets. Another direction is
to analyse the language modelling objective on broader downstream applications beyond
link prediction.
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Table 2.8: Three example predicates in each region of the t-SNE plot.

Pink Region

/base/schemastaging/organization_extra/phone_number./base/schemastaging/
phone_sandbox/contact_category
/location/statistical_region/places_exported_to./location/imports_and_exports/exported_to
/sports/sports_league/teams./sports/sports_league_participation/team

Red Region

/people/person/nationality
/people/person/religion
/soccer/football_team/current_roster./sports/sports_team_roster/position

Green Region

/education/educational_institution/students_graduates./education/education/student
/common/topic/webpage./common/webpage/category
/education/educational_institution/students_graduates./education/education/
major_field_of_study

Summary. This chapter proposes to use a language modelling like training objective
for trainingKBCmodels - by simply incorporating relation prediction into the commonly
used 1vsAll objective. Experiments show that this new learning objective is significantly
helpful to various KBC models. It brings up to 9.9% boost in Hits@1 for ComplEx
trained on FB15k-237, even though the evaluation task of entity ranking might seem
irrelevant to relation prediction. The results suggest that language-modelling-like, self-
supervised objectives can help models acquire structural knowledge. Moreover, even
though these objectives focus solely on local contexts – i.e., the immediate surroundings
of a predictive target – the induced model weights are still able to robustly recover the
global structures of the knowledge graphs.
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