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Chapter 3

Uncovering Interpretable Structures in
Pretrained Language Models

Parts of this work were previously presented in a preprint. Please refer to [Chen et al., 2024]
for the full citation.

In the previous chapter, we observed that language modelling objectives effectively com-
plete knowledge graphs, indicating that these objectives can embed structural patterns in
their model weights. At its core, a language modelling objective uses a token’s local con-
text to predict itself. Remarkably, this local approach enables models to infer broader,
global structures within structured data, such as knowledge graphs, particularly when
there is high contextual variety.1 This prompts a natural question: Can language mod-
elling objectives capture global structures in any dataset, or are they limited to explicitly
organized data like knowledge graphs?

To answer this question, we study transformer based large language models (LLMs)2

trained on unstructured texts. Typically, LLMs are trained using autoregressive lan-
guage modelling objectives, where each token is predicted based on the model’s analy-
sis of all its preceding tokens in the context. We hypothesize that this local modelling in
LLMs allows them to capture global structures, as factorization models do, even when
trained on unstructured, potentially noisy datasets like web text. Accordingly, this chap-

1For example, when there is many diverse predicates in the knowledge graph.
2Also known as foundation models for their general intelligence capabilities and applications across

diverse tasks.
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ter seeks to uncover these latent global structures within LLMs. Ourmethod decomposes
the transformer’s monolithic computations into an ensemble of atomic computational
paths, where each path resembles a factorization model, enabling structure recovery as
in knowledge graph completion (see Chapter 2). In factorization models and knowledge
graph completion, structures are typically limited to trigrams, whereas here they can
potentially span n-grams with sufficient compute budget.3 Using this method, we un-
cover and reconstruct structures embedded within LLMs that reflect patterns from their
unstructured training data – such as common English phrases and domain-specific key-
words from programming. Thus, despite training on unorganized texts, i.e. data without
any structures, large language models ultimately learn and encode meaningful structures
underlying the data through language modelling objectives. Since these structures are
intrinsic to the trained model, they provide a basis for interpreting LLM behaviour with-
out requiring external benchmarks, enabling data-free interpretability and transparency.
We explore several applications of these intrinsic structures for language models.

• Symbolic Interface. Constructing symbolic interfaces for neural languagemodels
by sketching their (or their components’) computation with the n-gram structures
embedded in the model weights.

• Behaviour Search. Searching key n-grams in the model internal to locate and
measure specific behaviours of interest, providing a deeper, structural profiling of
model behaviour beyond surface-level probing.

• Model Diff. Enabling data-free comparison of models by analyzing differences in
their n-gram structures, e.g., before and after fine-tuning.

Our case studies establish initial evidence for these applications with a few new inter-
pretations of LLM behaviours.

• Some feedforward networks (FFNs) appear to handle simple grammatical tasks,
such as adding the suffix “-ly” to preceding tokens, complementing recent findings
that FFNs store factual knowledge [Geva et al., 2021, 2022].

• LLMs acquire different bigram structures at varying speeds during pretraining. In
3We leave as future work scaling the method and finding n-gram structures for n > 3.
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OLMo, unique 1-to-1 bigrams like (&, amp) are acquired quickly while many-to-
many bigrams like (at, least)4 are initially promoted and later down-weighted.

• Vertical (downstream) finetuning, such as finetuning for coding tasks, raises the
ranking of coding-related n-gram structures within the LLMs.

• Alignment finetuning through RLHF [Bai et al., 2022] conceals toxic n-gram
structures from the surface-level outputs. Yet significant portions of toxic n-gram
structures still reside within the model, making it susceptible to “jail breaking”.

These findings contribute insights toward the responsible and transparent use of LLMs.

3.1 InterpretingLLMsbyUncoveringHidden Structures
Large language models (LLMs) are becoming increasingly prevalent as the univer-
sal knowledge engine, supporting a wide range of tasks, especially generative applica-
tions [Wei et al., 2021, Radford et al., 2019, Brown et al., 2020, Touvron et al., 2023a,b].
Despite their impressive capabilities, their opaque nature raises questions about their
inner workings and the need for attribution to understand model behaviour. Mechanis-
tic interpretability (MI) has emerged as an alternative to traditional attribution meth-
ods [Lundberg, 2017], focusing on tracing model behavior to internal structures rather
than to the input [Bereska and Gavves, 2024, Ferrando et al., 2024].

Most MI research seeks to reveal the learned “algorithms” embedded within model
computations, often using a hypothesis-and-dataset-driven approach. This approach typ-
ically involves forming a hypothesis, selecting a probing dataset, applying techniques like
path patching [Wang et al., 2022] or causal tracing [Meng et al., 2022], iteratively re-
fining the hypothesis in response to findings. Although valuable, this hypothesis-driven
MI approach may restrict open-ended exploration, which is crucial for uncovering global
behavior as did in human behavior studies [Skinner, 1965, Simon et al., 1990, Zipf,
2016], mapping model knowledge, and indexing behaviors to computation. Ultimately,
MI aims to uncover and label structures within the monolithic computations described
by the large neural models, with which users can index, associate and attribute various
model behaviours to distinct aspects of the model operations.

4Many-to-many refers to the fact that there are rich continuations after the token at and precedings
before the token least.
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As we see in Chapter 2, factorization-based models (FMs) with language modelling
objectives demonstrate that, after training, recovering structures can be as straightfor-
ward as computing (parameterized) inner products between embeddingmatrices [Trouil-
lon et al., 2016, Lacroix et al., 2018, Balazevic et al., 2019] – revealing that these em-
bedding matrices, derived from language modelling optimization, often store patterns
aligning with underlying structures in the data, if we query them through proper opera-
tions e.g. relational weighted inner products. Given that large language models (LLMs)
are similarly composed as an embedding-encapsulated system – an embedding layer, a
central transformer “body”, and an unembedding layer – trained using language mod-
elling objectives, we hypothesize that similar structures latent in the model may also
emerge in these large language models. We are interested in finding the structures and
investigate whether such structures could facilitate mechanistic interpretability in LLMs.

To achieve this goal, this chapter introduces a method for uncovering latent struc-
tures by decomposing a transformer’s computation into a set of distinct input-to-output
computational paths, each of which begins with an embedding layer and ends with an
unembedding layer – mirroring factorization-based models for knowledge base comple-
tion. By isolating these paths and systematically evaluating them in the input space, our
method reveals n-gram structures embedded in the model’s computations, analogous to
how FMs reveal relational patterns in knowledge graphs.

We further discuss the relationship between such decomposition and approximat-
ing the original computation using Taylor Expansion. Despite not fully approximating
the original transformer computation, the identified n-gram structures are useful for in-
terpreting large language models as we will elaborate in our case studies. Figure 3.1
illustrates the workflow. We present a set of case studies on several autoregressive large
language models (LLMs) from Llama and OLMo families with varying sizes. Our case
studies illustrate that these isolated computational paths and the n-grams they retrieve
offer valuable tools for interpreting LLM in multiple scenarios:

• i) revealing inner workings of LLMs where we identify specific functions of FFNs
and attention heads, such as adding “-ing” suffixes (Section 3.5.1);

• ii) analysing pretraining dynamics where we observe distinct learning patterns for
various bigrams e.g., “at least” is initially promoted and later suppressed inOLMo
(Section 3.5.2);
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Figure 3.1: The uncovered n-gram structures can be seen as a reformatting of the corre-
sponding large languagemodels. These n-gram structures are derived from decomposing
the transformer computations into smaller units, from where we can recompose matrix
factorizations. And the identified semantic structures can support applications in inter-
pretability and transparency.

• iii) assessing finetuning effects where we reveal model knowledge via domain-
specific n-grams with applications in quantifying toxicity levels, finding, perhaps
unexpectedly, that reinforcement learning from human feedback (RLHF) align-
ment [Bai et al., 2022] does not completely eliminate toxicity (Section 3.5.3).
These findings support the development of more interpretable, transparent and
responsible applications of LLMs.
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3.2 Literature Review: Transformers and N-grams
Interpreting transformers. There has been much effort in interpreting the inner com-
putations of transformer models. In particular, mechanistic interpretability [Ferrando
et al., 2024] focuses on reverse-engineering such computations by identifying, clustering
and labelling model behavior [Shah et al., 2024, Meng et al., 2022, Bricken et al., 2023]
in human understandable terms and attributing them with certain model components,
e.g., MLPs [Geva et al., 2021, 2022], or typical “circuits” [Conmy et al., 2023, Ferrando
and Voita, 2024]. Recent work discussed limitations of currents approaches to MI. For
example, Templeton et al. [2024] found it generally hard to conclude neuron-level in-
terpretabilities, compared with feature representations; while Bolukbasi et al. [2021],
Goldowsky-Dill et al. [2023] points out that conclusions drawn are generally limited to
the chosen data distribution. As our approach focuses on manipulating functions, it does
not require extra datasets that are used for probe fitting in methods such as Belrose et al.
[2023] nor sampling, as needed by [Conmy et al., 2023, Ferrando and Voita, 2024, Voita
et al., 2024]. On a high level, allowing singling out any portion of compute from the
original monolithic transformer, our expansions abstract and generalize previous char-
acterizations of the computational paths [Veit et al., 2016, Elhage et al., 2021], where
non-linear components with significant roles, e.g. layernorm and MLPs, are either ig-
nored or over-simplified for the ease of analysis. Additionally, zero ablations (or knock
out) [Olsson et al., 2022] and direct logits attributions [Wang et al., 2022] are linked to
particular instantiations of zeroth-order jet expansions [Chen et al., 2024].

The resurgence of n-gram models. The early applications of n-gram models for lan-
guages dates back to [Shannon, 1948], where n-grams were used to model the statistics
of English. In essence, these n-grams captured structure underlying the English data
they modeled: which words usually go together and which do not. The n-gram based
approaches have since then been vital in natural language processing, particularly for
general language modelling [Goodman, 2001] with applications like machine transla-
tion [Brants et al., 2007]. Recently, there have been regained interests in combining
n-gram with neural network based approaches [e.g. Liu et al., 2024b]. Several recent
works have also explored the relationships between LLMs and n-gram language mod-
els, such as analysing the representational capacity of transformers to emulate n-gram
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LMs [Svete and Cotterell, 2024], and measuring the agreement between LLM predic-
tions and curated n-gram rule sets [Nguyen, 2024].

3.3 Decomposing Transformers for Structural Recovery
Large language models are often based on the transformer architecture [Vaswani et al.,
2017]. The transformer, in its original formalization, was optimized for leveraging the
SIMD (single instruction multiple data) paradigm offered by the GPU for fast parallel
processing sequences. Despite its efficiency, this formalization is not designed for under-
pinning any human-understandable structures embedded in the model. To enable struc-
tural recovery similar to how a factorization model does on a knowledge graph (Chapter
2), we need to decompose the transformer computation into smaller and easier-to-analyse
units. A straightforward way is to cluster activation patterns on external datasets and
treat components reacting similarly to a group of data points as a unit [Voita et al., 2024,
Ferrando and Voita, 2024, Ferrando et al., 2024]. However, the recovered structures
will heavily depend on the choice of data in this case, undesirable for understanding the
model’s global behaviour.

Luckily, transformers, despite consisting of complicated modules like self-attention,
follow a simple recursive residual paradigm, where multiple identical architected resid-
ual blocks [He et al., 2016] are stacked together. We can exploit this fact to decompose
computations into a set of atomic paths, each of which behave like a factorization model
and enable latent structure recovery. Notation-wise, we operate at the granularity of
residual blocks (e.g., self-attention or MLP blocks). This notational choice simplifies
our presentation, while aligning with previous literature [Veit et al., 2016], and main-
tains practical relevance given the prevalence of residual computation for real-world ap-
plications [Dosovitskiy et al., 2020, Touvron et al., 2023a,b].

3.3.1 Neural Networks with Recursive Residual Links
We start by reviewing the archetypal computational structure of recursive residual nets,
which feature transformers prominently. Specially, we focus on neural network architec-
tures where the main body comprises multiple recursive residual blocks, with input and
output managed respectively by an encoding and a decoding module. Such models fall
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Figure 3.2: Embedding “sandwiches” are typical architectures for dealing with discrete
and finite inputs to the neural networks. For example, the factorization based models for
knowledge graph completion and the transformer for textual sequence completion.

into the same category of embedding-encapsulated models as the factorization models
do, where the body is “sandwiched” between two embedding layers (see Figure 3.2).

Formally, let Z be an input space. For example, this can be sequences of tokens.
Denote c ∈ N+ as the number of classes, such as the vocabulary size in a languagemodel.
Define Y = Rc as the space of output logits, which correspond to the unnormalised over
the c classes. Let d ∈ N+ represent the dimensionality of the hidden representations.
We are concerned with functions q : Z → Y described as follows:

q = υ ◦ hL ◦ η, where hL : Rd → Rd, hL =⃝L
l=1βl, (3.1)

where L ∈ N+ is the number of residual blocks (e.g. recursive depth), η : Z → Rd is
an input encoding module (e.g. token embedding layer),⃝ denotes repeated functional
composition, and

βl : Rd → Rd, for l ∈ [L],

βl = id+ γl, γl : Rd →,Rd (3.2)

υ : Rd → Y , υ(x) = U · γL+1(x),

U ∈ Rc×d, γL+1 : Rd → Rd (3.3)
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are respectively residual blocks with non-linearities γl’s (e.g., input-normalized causal
self-attentions or MLPs), and the output decoding module (e.g., an unembedding projec-
tion U after a layer normalization γL+1); id is the identity map. We leave all parameters
implicit and assume all functions are infinitely differentiable C∞.

For transformer based language models, the model is optimized with a language
modelling objective, where the next token is predicted based on analysing all the prior
tokens in the local context. The function q therefore outputs unnormalised conditional
probabilities (or logits) in that

Pq(“z belongs to class i”|z) = Softmax[q(z)]i, for z ∈ Z .

The recursive residual links are the critical ingredient that manages the information
flow in the transformer. By carrying forward the outputs from each layer along with
the embedded input, the recursive residual connections enable each subsequent layer to
access not only the immediate computations of the previous layer but also the aggregated
results from all prior layers. The recursive residual links thus facilitate the “storage” of
computations from all preceding blocks along with the embedded input, leading to the
accumulation of information across the model’s depths.

3.3.2 Rewriting Residual Computation for Various Purposes
Although residual links have mainly been visualized as arrows connecting stacked mod-
ules in the mainstream expression of Eq. 3.1, we note that this is a perspective that
renders their role in easing the training of deep networks. Such an expression of Eq.
3.1, suited for developing and training the deep residual nets, might not be suitable
for analysing and interpreting them. Therefore, rewriting them in other ways become
necessary for post training analysis and interpretability. Figure 3.3 summarizes several
rewritings for different purposes.

Nested update accumulation Notably, as visualized in Figure 3.3 (b), we can rewrite
the recursive computation of Eq. 3.1 by accumulating all the prior block outputs up to
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Figure 3.3: Various expressions of residual stream, each emphasizing a different aspect.
(a) a visual expression adapted from [He et al., 2016, Vaswani et al., 2017], highlighting
the identity shortcuts which ease the training of very deepmodels. (b) a visual expression
adapted from [Elhage et al., 2021, nostalgebraist, 2021], highlighting the updates being
written into the residual stream which serve as a communication channel. (c) a visual
expression adapted from [Veit et al., 2016], highlighting the unrolling of all the residual
links (d) a visualization highlighting our proposed decomposition in Section 3.3.3 into
separated input-to-output computational paths which are useful for interpretability. For
a linear residual net, (a)-(d) are equivalent expressions.

block l ∈ [L], assuming h0 = η:

hl =
(
⃝l

j=1βj

)
◦ η = η +

l∑
j=1

γj ◦ hj−1

q = υ ◦ η +
L∑
l=1

υ ◦ γl ◦ hl−1.

(3.4)

Elhage et al. [2021] introduces the term residual stream to describe hl, while similar
concepts like “residual bus” can be traced back to Hochreiter and Schmidhuber [1997]
and Srivastava et al. [2015]. Such rewritings of recursive residual links have been widely
applied in the mechanistic community [Elhage et al., 2021, nostalgebraist, 2021], high-
lighting the updates produced by each block (e.g. the self-attention block or the FFN
block in the standard transformer) being written into the residual stream which serve as
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a communication channel.

Gradient paths Similarly, Veit et al. [2016] describe and study the unrolled structure
of the final residual stream expressed as hL = η+

∑L
j=1 γj ◦hj−1, which reveals a num-

ber of paths from the input to the decoder (rather than the output), growing linearly with
the network depth L. This expansion is illustrated by the three pathways (black arrows)
leading to the node υ (red circle) in Figure 3.3 (c) for a case of two-layer residual archi-
tecture. Because the differentiation is a linear operator, this kind of rewriting is useful
for analysing the gradient flow during backpropagation, where one can track common
issues in training deep neural networks, such as gradient vanishing and gradient ensem-
bling from different paths. However, this rewriting alone does not lend itself directly
to analysing the model’s intrinsic input-output functional relationships. To “mechanis-
tically” understand the model’s behaviour, a further decomposition is needed to reflect
the internal structure underpinning the model’s knowledge possession.

3.3.3 Rewriting Recursive Residual Networks into Factorizations
So far, we have described several rewritings of a recursive residual computation graph,
each for a different purpose. For instance, Eq. 3.4 decomposes the original computa-
tional graph into a series of additive terms. Each term builds incrementally on the previ-
ous ones, forming a hierarchical structure. Despite resembling a series expansion (e.g.,
a Fourier Expansion), the terms in this rewriting are not sufficiently “atomic” – the in-
terdependency among terms and their intertwined roles complicate direct interpretation.

Decomposing recursive residual networks into 2L input-output paths To systemat-
ically decompose the nested terms in Eq. 3.4, we observe that each γl takes as input a sum
of upstream terms. Let us consider a sum x1+x2 as the input signal. If γl preserves addi-
tion, i.e. it is an additivemap [Reed and Simon, 1980], then γl(x1+x2) = γl(x1)+γl(x2),
naturally expanding the nested terms into distinct chains of dependencies that trace back
to the input when applied at all residual links. The original computational graph can then
be expanded as a sum of 2L unique paths. Each path applies L transformations, where
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each transformation is either γl or id. Formally, we can rewrite q by

q = v ◦
{
⃝L

l=1(id+ γl)
}
◦ η

= υ ◦ (
∑

s∈{0,1}L
⃝L

l=1γ
sl
l ) ◦ η

=
∑

s∈{0,1}L
υ ◦ (⃝L

l=1γ
sl
l ) ◦ η

=
∑

s∈{0,1}L
fs.

(3.5)

Here s = (s1, s2, ...sL) is an L-bit binary vector in the set of {0, 1}L, indicating a unique
path configuration. sl = 1 represents the path using the γl transformation. sl = 0 repre-
sents the path using the identity transformation id. ⃝L

l=1γ
sl
l is the sequential composition

used by the path according to s. This rewriting reveals that the original recursive residual
computation behaves as an ensemble of 2L increasingly complex input-to-output com-
putational paths fs : Z → Y sharing L core components. The complexity of a path is
determined by the number of non-identity transformations it involves. Thus the hier-
archy of the paths implies interesting properties of the recursive residual computation.
For example, simpler paths with fewer γl terms might capture broad and abstract data
patterns while more complex paths might capture finer details and potentially nuanced
noise. Moreover, these paths include “non-continuous”, where one path can skip one or
several blocks and directly go to the later portion of the computation graph.

Linear recursive residual networks as an ensemble of factorization models In the
real domain, linear γ’s are additive maps. So if we assume all γ’s are linear, such
that γl(x) = Alx, for l ∈ [L], and assume the encoder η(x) = Ex and the decoder
υ(x) = Ux then the result of the above decomposition turns out to be an ensemble of
factorization models:

q =
∑
S∈2[L]

U

(∏
l∈S

Al

)
E (3.6)

where 2[L] is the power set of [L] which contain 2L elements, meaning S could for ex-
ample be {1} or {1, 2} etc. Let us denote WS =

∏
l∈S Al, which is a d × d projection
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matrix, and fS(x) = WSx denotes the mapping of the selected path. So we have

q =
∑
S∈2[L]

UWSE
⊤

which is exactly a generalized factorization models where U ∈ Rc×d, E ∈ Rc×d are the
two embedding matrices wrapping the WS matrix. From this we can see that a linear
transformer boils down to an ensembling of 2L weighted matrix factorization UWSE

⊤,
where WS ∈ Rd×d is the weighting matrix between U and E. Akin to how predicates
(relations) weight the subject embeddings and the object embeddings, here WS plays a
similar role as a special kind of global predicates (and self-attention might act as local
predicates as our ongoing work shows). And most importantly, the outcomes from these
individual factorization models DS = UWSE

⊤ ∈ Rc×c becomes a database storing the
c × c interactions between the c tokens, resembling how a factorization model based
scoring function stores the links on a knowledge graph. These direct readouts from the
individual input-output paths thus recover the latent input-output structure underlying the
model computation. When applied to language models, we are equivalently converting
a large language model into a set of factorization models and thus into their associated
token interaction databases – a symbolic reformatting into a set of bigram databases,
where high-scoring entries reflect meaningful information structures about the training
dataset. Figure 3.4 illustrates this process.

Non-linearity in γl’s In practical residual architectures, however, γl are typically non-
linear and do not preserve addition – meaning γl(x1 + x2) can not be expanded into
separate terms associated with each individual upstream input xi. As a result, nested
terms in Eq. 3.4 are retained and the decomposition into 2L paths is not immediately
possible. However, we show that we can still single out any target computational path
from the super exponential set of block combinations as we do for the above linear γl
case and empirically obtain meaningful structural recovery as we show in Section 3.5
Despite the practical transformer’s non-linearity, we argue that this simple method re-
sembling the factorization based models enable meaningful structure recovery, of which
the effectiveness is validated with our case studies. In addition, the rewriting error can
be reduced via higher-order expansions with jets as we present the method in a follow-
up work of this chapter [Chen et al., 2024], where we propose to use jets expansions to
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Figure 3.4: Cartoon of the process of deriving bigram databases DS from the embed-
ded factorization model in each expanded input-output path fS for a two-layer recursive
residual net. For example, D{1} is derived from the path f{1}. These bigram databases
can be used to depict their corresponding paths to a certain extent.

handle non-linearities.

3.4 ExtractingN-gramStructures fromPretrainedLan-
guage Models

Now that we have established that factorization models can be pinpointed within (linear)
transformers, we can extract symbolic knowledge bases systematically from pretrained
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language models. These knowledge bases, represented in n-gram formats, can be used to
analyse structural information captured by large language models, thus bridging the gap
between arithmetic computations (e.g. matrix multiplications) and interpretable struc-
tures (e.g. domain keywords or other semantically meaningful units). As stated above,
the practical transformer contains non-linear components such as normalization func-
tion before input to each module. Implementation-wise, we chose to incorporate these
normalization functions into the input-output paths, and empirically we find these non-
linearities improve the quality of the extracted bigrams compared to using purely linear
paths [Elhage et al., 2021].

This section details our algorithms for extracting n-gram knowledge bases from the
factorization models embedded in transformer-based LLMs, specifically on unigrams,
bigrams, and trigrams. Due to computational constraints, higher-order ngrams with n >

3 are left for future work. Positional embeddings and the discussion on their choices
(absolute learnable positional embeddings v.s. relative positional embeddings) are also
excluded to avoid additional complexities beyond this study’s scope.

3.4.1 Bigrams
We focus on bigrams, as they are the first studied in the literature [Elhage et al., 2021].
Algorithm 1 outlines our approach to computing pairwise token interaction scores for
bigrams using token embeddings (E), an unembedding matrix (U ), and paths through
selected network components. The algorithm can be extended to accommodate any com-
putational path among the 2L possible paths through the transformer blocks. In this
study, we consider the following path options and use OLMo [Groeneveld et al., 2024]
as a demonstrative model in the algorithm:

1. Direct Path: This path processes embeddings directly without intermediate trans-
formations, as described in Elhage et al. [2021]. Additionally, our algorithm
incorporates the non-linearities presented in the OLMo architecture. The token
embeddings (E) are normalized using RMS normalization (RMSNorm), and the
normalized embeddings are projected onto the unembedding space to compute the
interaction scores, represented as DT,T+1. This bigram database corresponds to
the path represented as fϕ.
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2. Single FFN Path: This path includes a single feed-forward network (FFN) block
into the direct path. The token embeddings are first normalized using RMSNorm,
passed through the FFN, and normalized again. The resulting embeddings are
projected onto the unembedding space to compute the interaction scores. This
bigram database corresponds to the path represented as f{FFNi}.

3. Merged Path with Multiple FFNs: This option allows merging a list of selected
FFNs along with the direct path. This bigram database corresponds to the path
represented as f{FFNi1

,...,FFNim}. For this path:

(a) An accumulation tensor (e) is initialised with the normalized embeddings
(e← RMSNorm(E, ϵ)).

(b) For each selected FFN in the set, embeddings are normalized, processed
through the FFN, and normalized again. The FFN outputs are accumulated
into e.

(c) After processing all selected FFNs, the final interaction score is computed
asDT,T+1, normalized by the number of FFNs plus one direct path (|C|+1).

In all paths, a SoftMax operation is applied to the unnormalised scoresDT,T+1 along
the first dimension, ensuring interpretability as probabilities. In essence, the algorithm
evaluates these paths over the vocabulary space by wrapping the selected components
with the token embeddings (E) and the unembedding matrix (U ). The final output is a
2D tensor DT,T+1 that captures the pairwise interactions between tokens T and T + 1.
This tensor serves as a quantitative approximation of a bigram statistic Pq(zT+1|zT , . . . ),
revealing the token interaction dynamics embedded in the selected path(s). This bigram
algorithm can be extended to encompass the full residual computation rather than focus-
ing on partial computations. We refer to the results derived from this specific path choice
as naive bigrams. However, naive bigrams have limitations: they cannot describe arbi-
trary paths of interest, nor do they facilitate the analysis of path contributions to model
behaviour. Therefore, we skip them in the empirical study.
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Algorithm 1: Bi-gram Score. Compute 2-gram token interaction graph em-
bedded in embeddings, unembeddings and FFNs. Applicable to the OLMo
architecture with vanilla attention and non-parametric RMSNorm
Input: Token embeddings E, unembedding matrix U , path option p, a set of

components C along the specified path
Output: DT,T+1, a 2D tensor of pairwise token interactions
Function bigram(E,U, p, C):

if p is direct path then
x← RMSNorm(E, ϵ) ; // Apply RMS normalization
DT,T+1 ← xU⊤ ; // Project onto unembeddings

else if p is single FFN path then
x← RMSNorm(E, ϵ);
x← FFN(x);
x← RMSNorm(x, ϵ);
DT,T+1 ← xU⊤;

else if p includes Feed-Forward Networks (FFNs) then
e← RMSNorm(E, ϵ) ; // Initialize accumulation
foreach FFN ∈ C do

// Normalize embeddings for FFN computation
x← RMSNorm(E, ϵ);
// Perform FFN computation
x← FFN(x);
// Normalize FFN output and accumulate
x← RMSNorm(x, ϵ);
e← e+ x;

// Compute final interaction score across layers
DT,T+1 ← eU⊤;
DT,T+1 ← DT,T+1

|C|+1
;

Apply softmax on DT,T+1 along dimension 1;
return DT,T+1
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3.4.2 Extension to Unigrams
Unigrams can be obtained via finding the stable state of the Markov transition equation
defined via the bigrams conditional probability (Algorithm 2). The algorithm calculates
unigram scores by first deriving the Markov transition matrix from bigram probabilities
using the direct path, then performing an eigendecomposition to identify the steady-state
eigenvector (λ = 1), which represents the unigram probabilities, and finally returning
this as the unigram score.
Algorithm 2: Unigram Score. Applicable to the OLMo architecture with
vanilla attention and non-parametric RMSNorm.
Input: Embeddings E, Unembeddings U , RMSNorm constant ϵ
Output: DT+1, a 1D tensor storing individual token score, representing their

prominence within the model.
Function unigram(E,U, ϵ):

Obtain transitions DT,T+1 ← bigram(E,U, direct path, ∅);
Initialize the steady state DT+1 as a 1D zero tensor;
Compute eigenvalues and eigenvectors
{λi}, {µi} ← eigen_decompose(DT,T+1);
// Loop over eigenvalues to identify the stable state
foreach λi, µi in {λi}, {µi} do

if λi == 1 then
DT+1 ← µi;

return DT+1;

3.4.3 Extension to Trigrams
Calculating trigrams or skip n-grams becomes more nuanced because it requires unpack-
ing the mechanism of self-attention modules.

Self-Attention: Beyond Immediate Tokens Self-attention enables a model to attend
to tokens beyond just the immediate neighbours (e.g., bigrams). By applying one self-
attention layer, the model collects information from tokens farther away in the sequence.

For instance:
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• Predicting Token T+1: Using the representation at position T , one self-attention
allows the model to attend to any previous token k (k < T ). The information flow
can be represented as:

T + 1 ←︸︷︷︸
time step

T ←︸︷︷︸
time step

k

Here, T passes relevant context from k to T +1, creating a chain of dependencies
over time steps.

Skip N-Grams: Information Steps The above equation uses time steps as the coor-
dinates for a stream of tokens. However, a different coordinate axis will reveal more
informative reliance among tokens. Skip n-grams view the same information flow from
an information step perspective, rather than a time step. For instance, the skip trigram
process looks like this:

n+ 1 ←︸︷︷︸
information step

n ←︸︷︷︸
information step

n− 1

In this view:

• n carries relevant context from n− 1 to n+ 1.

• This contrasts with bigrams, where n − 1 passes information directly to n + 1

without intermediary steps.

Identifying such patterns embedded in the model can be useful to understand what kind
of knowledge is being stored in the model.

Example: Skip N-Grams in a Sentence Consider the sentence: “Lemma (Properties
of Jets) Let s be the function to be approximated.” If there is a sufficient number of
similar sentences in the training dataset, for example the training dataset contains heavy
portion of maths texts, then the model would capture skip-trigrams like:

• Token zn−1: “Lemma”

• Token zn: “Let”

• Token zn+1: “s”
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Connecting Self-Attention with Skip Trigrams We can obtain skip trigram statistics
relating to Pq(zn|zn−1, . . . , zn−2, . . . ), where dots indicate any number of interceding
tokens, by focusing on paths that contain one self-attention module and possibly filtering
out all paths that involve more than one self-attention. In general, paths with more self-
attentions will have higher n.

Algorithm 3 describes in detail how we obtain the trigrams. During the calculation
of the attention score between token T and k, the current token T becomes a bucket for
storing several contextual token k along with their weightings, and pass them later to the
target token T + 1 with weighting. The big 3D tensor for describing triplet interactions
among (k, T, T + 1) is decomposed into matrices from two steps T → k and k →
T + 1. In other words, we trace the indirect influence of each context token k’s onto the
(T, T +1) pairings by performing a non-contracted tensor product5 between the T → k

messaging matrix and the k → T + 1 messaging matrix.
Such n-gram statistics extracted directly from large language models can serve as a

data-free tool to sketch LLMs via casting them into (symbolic) n-gram databases. Thus,
they allow us to perform symbolic model comparison between any two models that share
a common vocabulary, as opposed to taking differences in the parameter space, which is
harder to interpret and only possible for models with the same architecture.

5It is interesting to see the non-contracted tensor products become the key operators for unpacking
transformer computation and derive interpretable structures. Its contracted version, matrix products,
works well when training deep neural networks on GPUs, where the SIMD paradigm prefers massive
parallel ALU computation and accumulating the intermediate computation results rather than caching
them all in memory and sequencing the computation. However, when we move to the interpreting neu-
ral network phase, it seems that accumulating the intermediate results all the way forward, i.e. the “deep”
computation, can be less relevant compared to the “wide” computation, where non-contracted tensor prod-
uct can keep track of all combinations of the indices – in language models indices correspond to tokens –
without reducing them via summation. With “wide” operators like non-contracted tensor product, we can
capture global information flow inside the entire vocabulary space, without collapsing higher-order token
interactions. The drawback is that it requires large amounts of memory to store all the interactions. We
foresee that there is a hardware lottery [Hooker, 2021] for language models interpretability akin to how
training deep language models favors GPUs. For example, in this chapter, we do not use any GPUs but
adopt CPUs with 1 TB memory.
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Algorithm 3:Trigram Score. Compute 3-gram token interaction graph embed-
ded in a self-attention layer via sparsely joining all attention heads. Applicable
to the OLMo architecture with vanilla attention and non-parametric RMSNorm
Input: embeddings E, unembeddings U , attention weights Wq, Wk, Wv, Wo,

RMSNorm constant ϵ, head size Dh, target head indices heads,
Output: DT,k,T+1: a sparse 3D tensor storing interactions
e← RMSNorm(E, ϵ);
Initialize DT,k,T+1 as zero tensor;
for h ∈ heads do

Obtain current head dimensions H = [hDh : (h+ 1)Dh];
Obtain QK matrix W ← W T

q [:,H]
Wk [H,:];

Obtain OV matrix V ← W T
v [:,H]Wo[H,:];

Compute QK message DT,k ← eWeT√
Dh

;
Apply softmax normalization on DT,k along dimension 1;
Sparsify DT,k based on threshold to obtain sparse tensor D̃T,k;
Compute Dk,T+1 ← RMSNorm(eV, ϵ) · UT ;
Apply softmax normalization on Dk,T+1 along dimension 1;
Sparsify Dk,T+1 based on threshold to obtain sparse tensor D̃k,T+1;
Compute D(h)

T,k,T+1 ← non_contracted_tsr_prod(D̃T,k, D̃k,T+1);
Accumulate DT,k,T+1 ← DT,k,T+1 +D

(h)
T,k,T+1 ;

// weighting trigrams with bigrams
Compute DT,T+1 ← bigram(E,U, ϵ);
Compute DT,k,T+1 ← 32DT,k,T+1 +DT,T+1;
return DT,k,T+1

Algorithm 4: Non-Contracted Tensor Product Ai,jBj,k = Ci,j,k

Input: Two tensors A and B

Output: A 3D tensor C
Function non_contracted_tsr_prod(A,B):

for each index i and k do
// if vectorized, an outer product A[i,:] ⊗ B[:,k]

for each index j do
Compute Ci,j,k = Ai,j × Bj,k;

return C
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3.5 Case Studies: Latent Structures for InterpretingLan-
guage Models

In this section, we explore applications of the uncovered n-gram latent structures. We
present several case studies where we utilize the identified structures for understanding
and interpreting large language models. To showcase the generality of the structure-
revealing method, we conduct experiments with popular open-source large language
model families: Llama [Touvron et al., 2023a,b, Rozière et al., 2024] andOLMo [Groen-
eveld et al., 2024]. Our experiments run on servers with 1 TB of memory and 128 CPUs.
Unlike traditional mechanistic interpretability studies, our method does not rely onGPUs
or external datasets for collecting network activation patterns, making it more accessible
to resource-constrained communities.

3.5.1 Use Case 1: Analysing LLM Inner Workings
Large languagemodels are notorious for their lack of interpretability [Zhao et al., 2024a].
The lack of interpretability is due to their inherent model complexity and size, made
worse by the usual opaque training process and unknown training data. Understanding
their inner workings, for example the roles of different components, can help calibrate
trust for users to use them appropriately. We showcase how the bigrams and trigrams
extracted along user-selected computational paths can help us discover and locate learned
associations akin to studies in mechanistic interpretability [Templeton et al., 2024], but
without any additional training or inference on external datasets.

Paths of individual components. By examining the representative bigrams that are
captured by each MLP path, we find MLPs that might perform special linguistic func-
tions. For example, in OLMo-7B, the path which passes through the 3rd MLP promotes
the addition of the “-ing” suffixes to the current token. Similar MLPs with certain lin-
guistic functions are listed in Table 3.1. Note that the relationship between functions
and components are not necessarily one-to-one mappings. Particularly we find that the
paths through multiple MLPs might work together to complete one linguistic function
e.g. MLP 6 and MLP 18 in Llama-2-7B can add “-ing” suffix. One MLP might also do
multiple linguistic jobs e.g. MLP 1 in OLMo 7B adding “-ly” and “-_else” suffixes.
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Table 3.1: MLPs inOLMo-7B and Llama-2-7B performing linguistic functions based on
jet bi-grams extracted from the corresponding jet paths. Logit values are computed after
intervention.

OLMo-7B

MLP Role ∆ logit

1 -ly, -_else −4.19, −3.35
3 -ing −0.58
9 -'t −9.73
17 -_than −4.26
19 -s −7.42

Llama-2-7B

MLP Role ∆ logit

6 -ing −14.61
7 -es −3.55
18 -ing, -ity −9.69, −11.93
19 -ly −9.14

This echos work on circuit discovery [Conmy et al., 2023, Ferrando and Voita, 2024]
and superposition [Elhage et al., 2022], where the role of each component can not easily
be dissected and multiple components collaborate to fulfil a function. Table 3.2 reports
a role identification study on attention heads in the first self-attention ofOLMo-7B using
trigrams. Specifically, we find heads associated with maths and programming, e.g. head
1 on Maths/latex; heads promoting digits and dash composition into dates, e.g. head 25;
and heads constituting phrase templates, e.g. head 15 managing a “for x purposes”,
where x is a placeholder. To verify the roles we revealed, we further perform prelim-
inary intervention experiments where we ablate MLPs or attention heads and compute
variations in model logits. After the interventions, the logits drop consistently for all
cases, suggesting our n-grams indeed can help identify roles for selected components.
Varying impact on logit differences is likely due to overdetermination [Mueller, 2024]
and our partial selection of paths (e.g. for trigrams we only selected encoding-attention-
decoding paths, excluding any MLP).

3.5.2 Use Case 2: Analysing Pretraining Dynamics
Pretraining an LLM is usually highly resource-intensive. Therefore, it is crucial to mon-
itor the progress of a pretraining run to prevent wasting of time and compute. In this
section, we show how bigrams can serve as an effective signalling tool to trace the pre-
training dynamics, providing insights about the model’s maturity. Such signals are es-
pecially useful to understand what happens with the model when the pretraining loss
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Table 3.2: Several attention heads in the first residual block of OLMo-7B and their roles
identified with jet trigrams extracted from corresponding jet paths. We also include an
example trigram captured by each head.

Head Index Role Example 3-gram ∆logit

2 Maths/latex (_Lemma, _let, _s) -0.1570
16 “for...purposes” (_for, _use, _purposes) -0.0019
26 Date composition (20, 23, _-) -0.0093
30 “into account...” (_into, _account, _possible) -0.0001

Table 3.3: Bi-gram evolution across pretraining steps for OLMo 7B. Each column rep-
resents a distinct step, while each row corresponds to a different rank. The table entries
are the bi-grams at each step for each rank. The number of tokens seen in association
with the pretraining steps is also annotated. The model gradually picks up meaningful
bi-grams after starting from random bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
0B [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least &amp &amp &amp
1 ICUirling at least ’s at least its own its own
2 ords architect its own &amp its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal� iums iums more than his own your own
6 Charg@{ you're you're can't 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant 'my more than make sure can't iums

shows marginal improvements and fails to reflect the changes inside the model.

Identifying the top bigrams. To assess the model’s progression, we extracted bigrams
from OLMo-7B model checkpoints across 555K pretraining steps. Table 3.3 presents a
summary of the top 10 bigrams at different stages of training. Due to space constraints,
we only show the top 10 bigrams every 100K steps. Initially, the network exhibits non-
sensical bigrams, such as “ICUirling”. As training advances, it gradually learns more
meaningful combinations, like “at least”. This process of acquiring sensible bigrams
stabilizes around step 200K, indicating that the model is reaching a level of maturity
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where the top 10 bigrams capture common meaning.

Analysing bigram learning speed. To evaluate the learning speed of these bigrams,
we consider the bigrams at the final training step (555K) as the ground-truth. We then
chart the hit ratios of these ground-truth bigrams at each pretraining step, as illustrated
in Figure 3.5. Interestingly, even though the pretraining loss (the blue curve) shows
only minor improvements after the initial 50K steps, the model’s acquisition of effective
bigrams continues to progress in a steady, consistent manner. This observation aligns
with known phenomena in neural network training, such as double-descent and grokking,
which highlight the model’s ability to improve generalization capabilities even when the
loss appears to stagnate [Zhang et al., 2021, Power et al., 2022]. In addition, Figure 3.6
characterizes the total pseudo-joint probability mass of top 1K bigrams from empirical
data [Liu et al., 2024b]. We derive a pseudo-joint bigram probability using statistical un-
igrams from [Liu et al., 2024b]. We observe that the model gradually accumulates prob-
ability mass that aligns with the real corpus data distribution. Interestingly, although
the overall trend is upward, the mass initially rises sharply from zero, then undergoes
two noticeable dips before continuing to increase. This non-monotonic behaviour likely
reflects distinct stages in the model’s learning dynamics. Early in training, the model
quickly captures high-frequency bigrams, resulting in the initial surge. As training pro-
gresses, it explores a broader range of token combinations, including less frequent or
less relevant bigrams, temporarily redistributing probability mass away from the top 1K
bigrams and causing the first dip. The second dip may result from further rebalancing,
overfitting to mid-frequency patterns, or transient noise in gradient updates. Contribut-
ing factors may include optimization dynamics and noise in the training data, which we
leave for future investigation. Eventually, the model reallocates probability mass more
accurately and converges toward the empirical distribution, resuming its upward trajec-
tory.

Learning schemes for different bigrams. To understand if there are any differences
between the learning schemes of different bigrams, we can trace the progression of the
bigram scores for selected bigrams. Figure 3.8 provides a visual comparison of how
different bigrams are promoted or suppressed during the pretraining process. We analyse
bigrams that exhibit different mapping relationships between the first and second tokens,
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Figure 3.5: Top 1K bigram hit ratios w.r.t. the final step.

inspired by the one-to-one, one-to-many, and many-to-many relational analysis in the
knowledge graph literature [Lacroix et al., 2018]. For example, “at least” is a few-to-
many bigram: there are many possible tokens that can follow “at”, but relatively few that
commonly precede “least”. The different slopes and levels of the lines indicate varying
rates of learning for the respective bigrams. We observe that, the model first acquires
random bigrams due to random parameter initialisation. These random bigrams, like
“ICUirling” and “VENT thanks”, are quickly suppressed in the early steps and never
regain high scores. In contrast, few-to-many bigrams like “at least” are first promoted
to very high scores but then get suppressed perhaps due to the model seeing more of the
scope of the token “at”. One-to-one bigrams like “&amp” (HTML code) are gradually
promoted and stabilize. Many-to-many bigrams like “make sure” takes the most time
to learn, and the scores are still increasing even at the end of pretraining. Our findings
suggest that the training process effectively promotes certain “good” bigrams, but at
different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as
targeted training on more relevant bigrams or adjusting the training data to improve the
pretraining speed.
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Figure 3.6: Top 1K bigram mass w.r.t. empirical data.

Figure 3.7: Analysis of OLMo-7B’s pretraining dynamics by measuring its bigram pro-
gression.

3.5.3 Use Case 3: Analysing Finetuning Effects
Finetuning is an important phase where the raw pretrained LLMs are guided to perform
particular tasks. We would like to understand how the model inner knowledge changes
during finetuning processes. While “parameter diff” can be a straightforward solution, n-
grams provides an alternative approach, where the diffs are human-readable and directly
reflect the change of knowledge retained by the LLMs, similar to how a diff command
wouldwork in Linux platforms. Such insights would allow us to better decide themixture
of data for finetuning, and the number of steps for finetuning, which are currently a mix
of heuristics and trial-and-error.

Code finetuning promotes coding-relevant bigrams. We analyse the changes due to
code finetuning via diffing bigrams extracted from Llama-2-7B and its finetuned ver-
sions, Codellama-7B and Codellama-Python-7B. As highlighted in Table 3.4 with or-
ange coloring, the bigram comparison reveals coding-relevant keywords, such as “**kwargs”,
“getters” and “Assertion”, suggesting bigrams can be a tool for verifying if finetun-
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Figure 3.8: Visualization of OLMo-7B’s promotion and suppression dynamics of bi-
grams scores.

ing is effective in acquiring relevant knowledge.

DoesRLHFfinetuning remove toxicity? Wecompare the raw pretrainedmodel, Llama-
2-7B, with its RLHF version, Llama-2-7B-Chat. RLHF alignment [Bai et al., 2022] is
widely believed to detoxify LLMs, as indicated by ToxiGen scores [Hartvigsen et al.,
2022]. However, it remains easy to prompt LLMs to bypass this alignment and produce
toxic content [Yi et al., 2024]. In Table 3.5, we demonstrate this with dataset-based
toxicity scores on a subset of challenging prompts in the RealToxicityPrompts (RTP)
dataset [Gehman et al., 2020]: the gap in toxicity potential between the two models nar-
rows as we prepend to RTP prompts increasingly “explicit” (short) context. Specifically,
for hard context, Llama-2-7B-Chat shows a 84% probability of producing toxic content,
close to that of Llama-2-7B. This suggests that the RLHFmodel is not completely detox-
ified but rather hides the toxicity knowledge from the “surface”, which however can be
easily triggered by specific contexts. To quantify the toxicity knowledge embedded in
these models, we use bigram probability scores and calculate the cumulative conditional
probability mass for a set of “toxic” bigrams, which are combinations of tokens associ-
ated with toxic meanings from a predefined list of keywords. Interestingly, we observe
a small change in mass from 0.03445 to 0.03377 after RLHF. Thus, although ToxiGen
scoremay suggest that themodel has been effectively detoxified, the bigrammass reflects
retention of toxic knowledge after RLHF, aligning with the scores obtained by introduc-
ing medium or hard explicit context and computing a toxicity score (via a second scorer
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Table 3.4: The bi-grams before and after code fine-tuning. For space constraints, we only
show the bi-grams at every 50 ranks among the top 1,000 bi-grams. We highlight the bi-
grams that are relevant to coding, such as “**kwargs” a keyword in Python programming.
This demonstrates that our method has the capability to extract representative bi-grams
that reflect fine-tuning quality.

Rank LLAMA2-7B CodeLLAMA-7B CodeLLAMA-Python-7B
0 (_more, _than) (_like, wise) (_like, wise)
50 (_Now, here) (_just, ification) (_Like, wise)
100 (_system, atically) (_in, _case) (_all, udes)
150 (_all, erg) (_get, ters) (_no, isy)
200 (_on, ions) (któber, s) (output, ted)
300 (_other, world) (_all, ud) (Object, ive)
350 (_Just, ified) (gebiet, s) (_as, cii)
400 (_trust, ees) (_Protest, s) (_can, nab)
450 (_at, he) (_deploy, ment) (_transport, ation)
500 (_book, mark) (Class, room) (Tag, ging)
550 (_from, �) (_access, ory) (_personal, ized)
600 (_WHEN, ever) (_In, variant) (_excess, ive)
650 (_where, about) (_I, _am) (_Add, itional)
700 (ag, ged) (add, itionally) (_**, kwargs)
750 (_he, he) (_invalid, ate) (name, plates)
800 (_all, anto) (div, ision) (_select, ive)
850 (_Tom, orrow) (_process, ors) (_Assert, ions)
900 (_for, ays) (_Program, me) (blog, ger)
950 (_Bach, elor) (_set, up) (_can, cellation)

model, [Hanu and Unitary team, 2020]) on RealToxicityPrompts dataset [Gehman et al.,
2020]. This showcases a potential application of bigrams in constructing data-free in-
dices that reveal embedded knowledge, offering complimentary views beyond traditional
data-driven benchmark evaluations.

3.6 Discussion
Limitations. Isolating partial computations out of the original transformer computa-
tion graph can be seen as a truncated Taylor approximation problem, where the center
is the portion we want to single out and the variate is the rest of the computation [Chen
et al., 2024]. This chapter does not dive into the details of such approximation but rather
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Table 3.5: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different meth-
ods: ToxiGen, jet bi-grams, and RealToxicityPrompts challenge prompting. Higher num-
bers indicate higher toxicity scores on the corresponding benchmarks and higher toxic
knowledge possession for jet bi-grams.

Metric Llama-2-7B Llama-2-7B-chat

Standard Benchmarking
ToxiGen Score [Hartvigsen et al., 2022] 21.25 0.00

Prompt-based Benchmarking with RTP Challenging Prompting [Gehman et al., 2020]
No Prompt 38% 23%
Very Mild 49% 35%
Medium 64% 64%
Hard 88% 84%

Data-free Benchmarking
Jet Bi-gram Mass 0.03445 0.03377

choose to present the parallel with factorization models, where latent structures can be
surfaced similarly as in knowledge base completion, echoing Chapter 2. Besides, the
structures we consider are fragments of natural languages, rather than factually mean-
ingful entities or relations. There are substantial evidences that LLMs encode real-world
factual structures, for example [Petroni et al., 2019] and [Yang et al., 2024], use curated
benchmarks to show pretrained language exhibit certain factual reasoning capability.
We would explore similar factual structures in our approach in the future. Additionally,
the n in the n-gram structures is bounded by the number of self-attention layers to un-
fold. For example, when no self-attention is used, we observe n = 2; adding a single
self-attention layer increases this to n = 3. We speculate that there exists a systematic
relationship between n and the number of self-attention layers, potentially exponential
in nature. Finally, we plan to verify the relationship between the found structures and
the pretraining data distribution, which requires large computing resources.

Summary. Large language models are sometimes seen as the victory symbol for the
unstructured learning paradigm, where structure curation seems no longer necessary for
building a powerful artificial intelligence agent – scaling model sizes on larger unstruc-
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tured textual corpora is the way. This chapter, however, shows that structures are still
the critical ingredients even in the large language models and exposing them is help-
ful for profiling the knowledge within each model checkpoint. Overall, this chapter
provides initial evidence that language modelling objectives, though focused on local
context and trained on unstructured data, can recognize and encode structural patterns
into the transformer model weights. The key in exposing these inherent structures is
to observe that transformers, the typical architecture for large language models, contain
portions of computations that resemble factorization based models (FMs). Once trained
with LM objectives, these portions of computations capture latent structures in the train-
ing data. To expose these structures, this chapter dissects these FMs from the monolithic
computation graph of the transformer and derive their corresponding bigrams and tri-
grams. Akin to how structures help recover the knowledge graph in knowledge base
completion, this chapter demonstrates that the uncovered n-gram structures in LLMs
help reconstruct the linguistic functions acquired via the models, offering an alternative
angle to interpret LLMs in a data-free way. Our case studies demonstrate the potential of
using extracted n-gram patterns to debug pretraining progress, verify fine-tuning effects,
and detect model toxicity. Looking ahead, LLMs could expose two complementary in-
terfaces: a neural interface for training and prediction, and an n-gram-based symbolic
interface for inspection, analysis, and control.

Implications. This chapter demonstrates that the same computation, if examined under
a new perspective, can lead to new insights that are invisible in the original lens. Using
transformers as an example, one view (let us call it the neuron view) is to see it as a
special organization of neurons into stacked self-attention and FFNs plus embeddings
on both ends; this view allows easy implementations for training on GPUs. Another
view (let us call it the behavior view), which is more helpful to interpretability, is to
see it as an ensemble of n-gram models describing token transition behavior. Although
the neuron view is useful when building the model and training it, it might not be the
best level of abstraction for understanding and interpreting model behavior due to the
issue of polysemy [Elhage et al., 2022]. We believe that to understand the model better,
channelling both the neuron and behaviour view is necessary. Our method provides
an initial attempt to do this by reorganizing the neural computations into FMs, which
brings structures in behaviours. This new lens enable new findings such that LLMs do
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not “digest” data points equally – some structures are acquired fast, but the others are
always in learning or first learned and then suppressed. These new findings are relevant
in the ongoing discourse on AI transparency and trustworthiness.
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