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Abstract

The making of knowledge engines in natural language processing has been shaped by
two seemingly distinct paradigms: one grounded in structure, the other driven by mas-
sively available unstructured data. The structured paradigm leverages predefined sym-
bolic interactions—such as knowledge graphs—as priors, and designs models to capture
such priors. In contrast, the unstructured paradigm centres on scaling transformer archi-
tectures with increasingly vast data and model sizes, as seen in modern large language
models. Despite their divergence, this thesis seeks to establish conceptual connections
that bridge these two paradigms.
Two key connections are identified:

* Structure Formation: Self-supervised objectives, such as language modelling,
induce structural patterns in model computation across both paradigms. These
objectives support data graph reconstruction, facilitating link prediction in the
structured paradigm and providing interpretability in the unstructured paradigm

through extracted n-gram patterns.

* Destructure for Plasticity: Embeddings, a critical yet often overlooked compo-
nent in both paradigms, cache message-passing computations over symbols dur-
ing training. However, excessive caching can hinder generalization. Embedding
forgetting, defined as the periodic reset of embedding weights, improves model
plasticity and enables generalization to previously unseen scenarios, such as novel

predicates or languages.

These connections form a new recipe for developing general knowledge engines,
where the guidelines not only include modelling of the seen symbolic interactions but

also modelling of the unseen, the latter being relatively underexplored. Efficiently mod-
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elling the seen necessitates structure formation, regardless of whether the data is inher-
ently structured or not. Conversely, modelling the unseen benefits from active destruc-
turing of the learned cache, which promotes robustness and adaptability.

By bridging the two paradigms, this thesis establishes structure and destructure as
complementary forces in the design of knowledge engines that can support transparent,

controllable, and adaptable intelligent systems.
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Impact Statement

Artificial intelligence (AI) systems are becoming deeply embedded in our life, as tools
or companions. They shape how we search for information, receive recommendations,
and interact with people across cultures and languages. These fundmentally change how
we perceive the world, and acquire relevant knowledge for navigating in the world. Yet
most Al models today still struggle to connect structured data (such as databases or
knowledge graphs) with the unstructured natural language used in real-world commu-
nication. This thesis bridges structured and unstructured paradigms, providing a con-
ceptual framework for developing general knowledge engines that back adaptable and

controllable Al agents. Its impact is listed as follows.

Academic Impact. The thesis has introduced new methods, such as reinterpreting em-
beddings as message-passing caches and proposing active forgetting mechanisms. These
methods enable models to adapt to unseen knowledge graphs and novel languages, en-

hancing generalization across domains. This influences various research communities:

* Knowledge Base Completion: The GitHub repository accompanying Chapter

has garnered over 100 stars, demonstrating its adoption by the community.

* Language Model Interpretability: Techniques for extracting n-gram patterns
from transformers (Chapter @) offer tools for auditing large-scale models, address-

ing critical needs for transparency and safety in Al

* Cognitive Science: Chapter B also provides insights for studying human language
acquisition for example the critical period [Constantinescu et al., 2024].

Industry Impact. Methods developed in the thesis can address practical challenges
faced by the Al industry:
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* Recommender Systems and Search Engines: Techniques for bridging struc-
tured and unstructured data integration (Chapter 2 and Chapter @) are relevant for

improving algorithms used by companies like Google and TikTok.

* Language Model Plasticity: Active forgetting enables more adaptable Al sys-
tems, which is critical for businesses operating in multilingual or dynamic envi-
ronments. Microsoft [Aggarwal et al., 2024] applies active forgetting to GPT style
models and Cambridge researchers [Zhao et al., 2024b, [acob et al., 2024 explores

forgetting inspired decoupled learning to privacy-preserving scenarios.

Societal Impact. The thesis has several societal implications:

* Cognitive and Privacy Research: Active forgetting mechanisms resonate with
principles in cognitive science and privacy, informing discussions on memory

management and data retention in Al systems.

* Al Education and Policy: Insights into model transparency contribute to design-

ing Al systems that align with ethical standards and public accountability.

By bridging structured and unstructured paradigms, this thesis provides a pathway
toward developing intelligent systems that are robust, transparent, and aligned with hu-
man values. These systems hold the potential to revolutionize how we interact with and

benefit from Al across domains.
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Chapter 1

Introduction

1.1 Building General Knowledge Engines

Humans have long been captivated by the pursuit of intelligence: seeking to understand
its emergence, improve it through training, slow its decline over time, and ultimately
replicate it in machines. This endeavour is driven by a desire to extend our innate cog-
nitive abilities across time and space, aiming to achieve more efficient and effective use
of our intellectual resources — much like how the Industrial Revolution transformed our
ability to automate and amplify our physical capabilities.

One of the defining characteristics of intelligence is its ability to process and man-
age knowledge about our realities. The human mind, as the faculty of intelligence,
can function as a general knowledge engine, capable of acquiring information from di-
verse sources, consolidating it through abstraction, retrieving it for reasoning on rele-
vant tasks, and updating it to address evolving environments. This knowledge engine
supports us across a wide spectrum of tasks, ranging from routine activities — such as
navigating daily commutes, managing personal schedules, or cooking meals — to com-
plex decision-making, like formulating trading strategies, resolving political conflicts,
diagnosing medical conditions, or writing a PhD thesis.

When developing artificial intelligence (Al), particularly with the aim of emulat-
ing human intelligence, replicating general knowledge engines becomes crucial. These
knowledge engines can serve as the backbone for many of our most impactful digital

infrastructure today, such as search engines, recommender systems, and conversational
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Figure 1.1: Illustration of how “knowledge engines” in human minds facilitate diverse
human activities and how current digital knowledge engines underpin applications such
as digital assistants, social media platforms, and recommendation systems.

agents (e.g., virtual assistants and chatbots), supporting our daily digital activities, as de-
picted by Figure . However, building general knowledge engines is not an easy task.
In fact, it has been a complicated subject and the focus of many areas of studies, span-
ning disciplines such as natural language processing, information retrieval, data mining,
machine learning, and cognitive science. Profoundly, a core challenge lies in integrating
diverse knowledge sources and updating them in real time.

To better understand this challenge, let us consider a concrete example: the develop-
ment of an Al doctor designed to mimic a human physician. We can begin by examining

the steps a human physician undergoes to acquire the necessary knowledge and skills.



Example: The Training of a Medical Doctor

Consider Tom, a medical student, who progresses through various stages of

learning to become a proficient doctor:

1. Childhood Curiosity: As a child, Tom was attracted by the wonders of na-
ture and the human body. His fascination deepened through stories shared by

his grandfather, a seasoned doctor, who instilled in him a passion for healing.

2. Formal Education: In his school years, Tom immerses himself in medical
textbooks, which provide organized and systematic knowledge in areas such
as biology, chemistry, anatomy, pathology, and pharmacology. These re-
sources act as the foundation of his medical expertise, enabling him to build
clear connections between key concepts in the healthcare domain, forming

structured knowledge that he can repeatedly use in his later profession life.

3. Clinical Rotations: During his clinical rotations, Tom observes senior doc-
tors at work, engages in discussions about complex patient cases, and analy-
ses unstructured clinical notes. These hands-on experiences and potentially
unspoken knowledge teach him how to think critically about patient symp-

toms and interpret subtle contextual relationships among them.

We can see that Tom’s mind operates as a knowledge engine, seamlessly blending
structured knowledge sources (e.g., drug-drug interactions) for accurate recall with un-
structured insights (e.g., holistic symptom assessment notes) to guide informed clinical
decision-making. On the other hand, his natural curiosity, a form of open mindsets, con-
tinuously seeds the drive to refine, update, and expand his knowledge, ensuring that it
evolves with the changing medical landscape. Similarly, an Al system aspiring to mimic
such medical expertise must have a knowledge engine that can leverage both structured
and unstructured sources to acquire, consolidate, apply, and update knowledge dynam-
ically.

This thesis presents a scientific exploration aimed at understanding the approaches to
develop knowledge engines for Al agents and how these seemingly disparate approaches
can be unified into a framework for creating more general knowledge engines that can

adapt to previously unseen environments. At a high level, there are primarily two exist-
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ing paradigms for building general knowledge engines, the structured paradigm and
the unstructured paradigm, as detailed in Section . However, the dichotomy be-
tween these approaches diminishes, upon closer examination of their internal mecha-
nisms during training and inference, as well as their shared limitations in generalizing to
new, unseen environments. This convergence suggests a unified, integrated pathway for
constructing general knowledge engines.

The remainder of this chapter will outline the motivation and context for such unifi-
cation and integration (Section ), the research objectives and questions (Section ),
a brief overview of the methodology (Section ), and a roadmap of the thesis structure

(Section ).

1.2 The Dichotomy: Structured vs. Unstructured

The majority of human knowledge sources can be categorized into two forms: the struc-
tured and the unstructured. Historically, research on processing these two forms of
knowledge for Al systems has largely been studied in separate streams.

The earlier waves of Al features expert systems proliferated in the 1980s [Hayes-
Roth et all, [1983]. Expert systems were heavily backed by structured knowledge sources,
such as curated knowledge graphs specifying relationships among entities. In contrast,
contemporary Al advancements increasingly favour massive unstructured datasets — for
instance web data — as the foundation for building state-of-the-art Al

In this thesis, we will refer to these two paradigms as the structured paradigm and
unstructured paradigm. We note that the transition from the structured data to unstruc-
tured data is not a binary division but rather along a spectrum of relative structuring. For
example, from the grammar perspective, coding data is more semi-structured compared
to natural language data; from the conceptual ogranisation perspective, textbook data is
more structured and organized compared to texts coming from the internet. While ac-
knowledging these intermediate forms, this thesis seeks to examine the archetypal struc-

tured and unstructured paradigms, as presented below.



1.2.1 The Structured Paradigm for Building Knowledge Engines:
Exemplified by Knowledge Graphs

Structures are fundamentally about how different parts relate to each other and how they
assemble to represent realities — whether physical or virtual. These structures are es-
sential for humans to organize and understand the world around us. Particularly, our
world is full of physical structures, such as molecular networks, protein folding patterns,
and transportation routes. In this sense, structures allow us to efficiently categorize and
underpin various manifestations of the physical world. On the other hand, structures
can also be abstract or virtual, like social interactions, the laws governing rational rea-
soning or the hierarchical relationships among words. These types of structures help us
systematize our understanding of abstract concepts and connections.

In the history of Al, structured knowledge sources have aimed to organize such infor-
mation in predefined formats, such as knowledge graphs, databases, and other relational
structures [Wang et al., 2017]. In these formats, symbols are arranged in fixed-length
sequences governed by specific grammar, where each position holds a defined role. For
instance, in a knowledge graph, a knowledge triplet consists of three components: the
first position typically denotes the subject (or head entity), the second represents the
predicate (or relation), and the third position corresponds to the object (or tail entity)ﬁ].

To illustrate this, consider the following diagram of a knowledge triplet:

(diabetes, _form_, type 1)

Where in this diagram:

* The Subject (or head entity) is diabetes.
* The Predicate (or relation) is _form_.

* The Object (or tail entity) is type 1.

A collection of such knowledge triples forms a knowledge graph. For example, the di-
agram in Figure illustrates a portion of a widely used healthcare knowledge graph,
SNOMED-CT, which is detailed in [Donnelly, 2006].

'In some cases, a relation defines a set of ordered pairs between subjects and objects.
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Figure 1.2: A medical knowledge graph showing relationships between myocardial dis-
eases and associated conditions. The triples in the knowledge graph is drawn from
SNOMED2Vec [Agarwal et all, 2019].

The structured paradigm is built around two key elements: data format and structural
representation learning. Structured knowledge is typically represented through formats
like multidimensional arrays, sparse graphs, or triplet databases, which allow for the ex-
plicit depiction of relationships and enable the analysis of logical properties such as tran-
sitivity, reflexivity, and antisymmetry. Representation learning in this context focuses
on embedding these structures into model computations using approaches like factoriza-
tion models (FMs) [[Yang et all, 2016, Lacroix et al., 2018, [Trouillon et al., 2016] and
message-passing graph neural networks (GNNs) [Schlichtkrull et al., 2018, Vashishth
etall, 2020, Zhu et al., 2021]. These models play a crucial role in both the automated con-
struction of large-scale structured knowledge bases and in powering downstream tasks
like question answering.

Knowledge engines built on structured paradigms excel in applications that require
interpretability, consistency, and efficient reasoning. For example, they play a central
role in serving as world models, which aim to represent reality comprehensively [LeCun,
2022]. Knowledge graphs, in particular, have been applied in a variety of domains,
including commonsense reasoning [Hwang et al., 2021], digital twins [Akroyd et all,
2021], and text-based games [[Ammanabrolu and Riedl, 2021]]. These structured models



also power some of the most widely used digital applications, such as:
* Knowledge Bases: Essential to expert systems (e.g., IBM Watson Medical).
* Search Engines: Enabling tools like Google Search.
* Recommender Systems: Underpinning platforms like YouTube.

* Social Media: Enhancing features on platforms like X.com and Instagram.

Intelligent Assistants: Backing intelligent systems on edge devices like Siri.

1.2.2 The Unstructured Paradigm for Building Knowledge Engines:
Exemplified by Pretrained Language Models

The latest wave of artificial intelligence, particularly generative Al, marks a significant
shift toward an unstructured paradigm, exemplified by large language models. These
models ingest vast amounts of unstructured text, moving away from the traditional re-
liance on structured knowledge sources. This paradigm shift was made possible by the
Transformer architecture, which demonstrated that pretraining on large-scale unstruc-
tured datasets could lead to the generation of foundational representations [Devlin et al,
2019, Radford et al/, 2019, Brown et al/, 2020].

Following the advent of Transformer models, most algorithmic advancements have
focused on improving computational efficiency, with an increasing emphasis on scaling
model size and dataset diversity, rather than the structural intricacies of data or model
architecture [Kaplan et al/, 2020, Hernandez et al., 2021, Templeton et al., 2024]. The
importance of preparing structured knowledge has diminished due to its high cost and
complexity. In contrast, the process of crawling the web for diverse unstructured data
has become a far more accessible and scalable alternative.

Unstructured data, in contrast to structured data, exists in free forms where the po-
sition of symbols within a sequence does not inherently define their role. For instance,
in a sentence, the first word is not necessarily the subject, nor the last word the object.
This type of knowledge is commonly referred to as corpus, corpora, or text, and is typi-
cally represented as sequences of variable lengths. Notable sources for pretraining large

language models include:



* Web Text: One of the most commonly used web datasets is Common Crawl’s
petabyte-scale archive of web data since 2008 [Crawl, 2023]. Other similar datasets
include CC100 [Conneau et al., 2020], OpenWebText [Contributors, 2019], and
RedPajama [Computer, 2023].

* Web Code Data: Datasets like Starcoder [Project, 2023], which scrape reposito-
ries from GitHub and Stack Overflow.

* High-Quality Referential Sources: PeS20 [Soldaini and Lo, 2023] for academic
data from Semantic Scholar, Project Gutenberg [Hart and Volunteers, 1971-2024]
for books, and Wikipedia [authors, 2024] for encyclopedic knowledge.

The unstructured paradigm facilitates the development of large-scale language mod-
els that serve as alternative knowledge engines. These models are increasingly recog-
nized as world models [Petroni et al), 2019, Li et al|, 2021a, Hernandez et all, 2023],
demonstrating exceptional performance in domains where structured data is sparse or
unavailable. By processing unstructured data, these models have been shown to capture
implicit relationships and context, enabling a broad range of capabilities, from answering

questions to powering conversational Al systems like ChatGPT.

1.2.3 Comparing The Two Paradigms

The structured and unstructured paradigms of knowledge representation exhibit distinct
features, as summarized in Table . Therefore, they also have different advantages and
disadvantages as summarized by Table .

The structured paradigm offers significant efficiency benefits. It allows repetitive
reuse of structured data, eliminating the need to compute solutions from scratch for re-
curring tasks. It also provides stable and consistent computational outcomes, particularly
for logical reasoning tasks, such as deduction within knowledge graphs. Despite these
benefits, structured paradigms face flexibility limitations. Particularly, structures can
be restrictive, unable to fully accommodate the nearly infinite variability of real-world
phenomena and vulnerable to missing entries.

The unstructured paradigm excels in its flexibility. It can represent and learn from di-

verse, unstructured data sources, capturing nuances that structured systems might miss.



The unstructured paradigm is particularly effective for tasks requiring generative capa-
bilities, such as answering diverse questions flexibly or producing cartoon images based
on given keywords. However, they have notable drawbacks: 1) learning from unstruc-
tured data often requires starting from scratch, incurring high computational costs. ii)
model generations can be hard to control, potentially containing biased or toxic content.
iii) due to the black-box nature of end-to-end neural architectures commonly used in this
paradigm, model generations are difficult to interpret and model internal mechanisms

are less transparent to even their developers.

Table 1.1: Key distinctions between structured and unstructured paradigms in terms of
data format, architecture, and learning objective.

Structured Paradigm Unstructured Paradigm

Data Format Knowledge Graphs Free-form text
Architecture FMs, GNNs Transformer
Learning Objective Entity Prediction Language Modelling

Table 1.2: Comparison of pros and cons between structured and unstructured paradigms

for building knowledge engines.

Structured Paradigm

Unstructured Paradigm

Pros < Controllable, easy to update, e Flexible, solving diverse prob-
remove, or edit. lems.
* Interpretable and consistent, Generative, responding without
supports reasoning and plan- intermediate stages.
ning. » Efficient ingestion, minimal
* Efficient for solving recurring data preprocessing.
and similar tasks.

Cons < High construction cost for < Expensive training and infer-

structured data.

* Lacks flexibility, vulnerable to
missing data.

* High search cost for large
knowledge bases.

ence.

* Hard to control, prone to
hallucination and toxicity.

e Lacks interpretability and
transparency.
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1.3 Bridging Structured and Unstructured Paradigms

Despite the apparent differences between the two paradigms, this thesis seeks to bridge
them in a mechanistic way, paving the path towards a unified framework for building
general knowledge engines that can serve artificial intelligence agents in a dynamic en-
vironment.

Theoretically, unifying the two paradigms will deepen our understanding of their
modeling principles, potentially revealing common techniques that can be applied across
both structured and unstructured knowledge representations. Practically, both paradigms
currently struggle with generalizing to unseen symbols. For instance, knowledge graph
embedding models face challenges in generalizing to new entities, while pretrained lan-
guage models often fail to generalize to unseen languages. A deep understanding of the
mechanism underlying both paradigms allow us to develop new techniques that address
the generalization issue.

Concretely, in this thesis, we ask:

1. What commonalities exist between structured and unstructured paradigms, given
that both aim to build knowledge engines for Al agents? For example, can we
identify and leverage shared techniques or methodologies that are effective across

both paradigms?

2. How can we make the knowledge engines more universal? For example, how can

we make models in both paradigms generalize to unseen environments faster?

1.4 Methodological Overview and Contributions

Our methodology begins by observing that mainstream models across both structured
and unstructured paradigms share a common architectural design, which we refer to
as the Embedding Sandwich. Specifically, these models are structured with embedding
layers at both the input and output stages, enclosing a central processing module (referred
to as the body of the model). The input embedding layer encodes initial data into dense,
lower-dimensional representations where symbols of various granularities (e.g., words,
characters, subwords, etc.) are represented as vectors. This encoded representation is

then passed through the body (e.g., transformer layers, recurrent neural networks, or
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other architectures) that processes and transforms the information. Finally, the output
embedding layer decodes the processed representation into the model’s predicted output.

From there, our contributions are divided into two major research thrusts. The first
focuses on structure formation within model computations, which naturally emerges
from language modelling objectives, regardless of whether the input data is structured
or unstructured. The second explores the opposite force of destructuring, wherein parts
of the learned representation are periodically cleared to enable “model plasticity”, the
ability to allow the model to generalize effectively to unseen environments. These two
research branches employ distinct methodologies. In Part m, we investigate the learning
objective by reformulating models analytically and demonstrating how specific objec-
tives can lead to equivalent tensor factorizations. In Part @ we focus on learning dy-
namics, introducing active embedding forgetting as a mechanism for resetting learned
representations to promote adaptation in new environments.

Interestingly, while embeddings are often overlooked components or treated as yet
another linear layer, our research highlights their critical role in learning symbolic re-
lationships when using a language modelling objective. We show that a set of embed-
dings can store symbol interaction trajectories after trained with language modelling ob-
jectives, where parameterized inner-product computations can produce symbolic links.
These symbolic interactions can subsequently be used to recover underlying global data
structures (Chapter 2 and Chapter @). We further propose a message-passing reinterpre-
tation of embedding layers, where embeddings are not viewed in isolation but together
with their gradient descent (GD) process (Chapter @). GD over vector inner-products fa-
cilitates message-passing across neighbourhoods, and the vector embeddings store these
accumulated relational signals.

Our theoretical analysis reveals that the generalization bottleneck stems from infinite
message-passing within the training dataset. This insight suggests that active forgetting
of embeddings mitigates this bottleneck by promoting destructuring, allowing the other
parts of the model to focus on meaningful abstractions instead of being anchored to the
noise in embedding initialisation (Chapter E).

In summary, rather than focusing on surface-level distinctions such as data formats or
specific model architectures, this thesis uncovers deeper conceptual connections between

the two paradigms. These connections are framed along two core dimensions:
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1. Structure Formation: This dimension depicts how symbolic relationships are en-
coded into model computations through language modelling objectives. The pro-
cess applies to both structured and unstructured paradigms, enabling models to
capture meaningful structures from different data formats, which are later useful
either to complete missing entries in a knowledge engine or make a black-box

knowledge engine transparent.

2. Destructuring for Generalization: This dimension addresses how regularly reset-
ting learned embeddings — actively destructuring encoded structures — helps mod-
els overcome generalization bottlenecks and adapt to previously unseen symbols.
The active destructuring helps models remain flexible and capable of continuous

learning, regardless of whether the data is structured or unstructured.

Together, these insights reveal the mechanistic role of embeddings in the learning
process, which are critical to practical tasks such as completing knowledge bases, inter-
preting large language models and enhancing their transparency, and addressing bottle-
necks imposed by fixed vocabularies for both paradigms. These findings ultimately point
toward building more general knowledge engines capable of adapting to new knowledge
graphs, processing previously unseen languages, and potentially transferring across di-

verse tasks, tool usages and domains in the future.

1.5 Thesis Roadmap

The thesis will be organized into two main parts, Part m Structure and Part @ Destructure,
along with the opening and the closing. We will subsequently give an overview of these
parts in the following table (Table ).

13



Table 1.3: Overview of the thesis structure and chapter contributions.

Part

Description

Opening

Part H

Closing

Building Knowledge Engines. Introduces general knowledge en-
gines and the structured vs. unstructured paradigm divide. Presents
the overarching research goal: bridging both paradigms.

Structure — The Foundation of Knowledge Engines. Language
modelling objectives induce structure in both paradigms.

Chapter E Language Modelling Completes Knowledge Graph
Structures. Reframes knowledge base completion as language mod-
elling, showing how language models represent graph structure.
Chapter 3: Uncovering Interpretable Structures in Pretrained Lan-
guage Models. Proposes a method to extract interpretable latent
structures from LLMs using residual connections.

Destructure — Addressing the Limits of Rigid Knowledge. Intro-
duces active forgetting to enhance model plasticity.

Chapter .' Inductive Knowledge Graph Learning with Active For-
getting. Interprets factorization models as GNNs and proposes
REeFacTor GNNs for improved generalization.

Chapter E Improving Language Model Plasticity with Active For-
getting. Shows how forgetting improves adaptation in multilingual
and out-of-domain settings.

Toward General Knowledge Engines. Summarizes findings, re-
flects on limitations, and outlines directions for future work.
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When modelling our surroundings, we construct concepts, judgments,

and ourselves.

One key characteristic of intelligent behaviours is their structured nature — acting on
groups of similar objects in systematic and consistent ways, assembling small actions
into larger tasks, and producing controllable outcomes. In human cognition, structures
allow us to efficiently organize, remember, and recall information about the reality that
is important and interesting to our survival and well-being in the world. With structures,
we can make valid logical inferences in similar scenarios and generate conclusions reli-
ably given the same premises. Likewise in intelligent systems, understanding structures
is essential because it underpins efficient knowledge representation, which allows com-
posing complex reasoning chains with smaller ones, and producing reliable outcomes
given repeatable queries. Recognizing the importance of structures for both human and
machine intelligence, we now turn to the two main paradigms for constructing Al knowl-
edge engines — structured and unstructured — which, as their names suggest, approach
structures in fundamentally different ways.

Structured approaches, exemplified by knowledge graphs and expert systems, pre-
define structures by manually specifying how entities (subjects or objects) relate to one
another with different relations (predicates). This allows the same predicates to be ap-
plied consistently across similar subject-object pairs, enabling systematic manipulation
of entities and relations. For instance, if we want to infer the function of a drug A,
we can query a knowledge graph with something akin to “(?, _is_the_function_of,
A).” This query pattern can systematically be reused to search for the functions of other
drugs, such as B, C, D, etc., simply by substituting the query object. In a nutshell, the
knowledge graph approach is equivalent to manually structuring the reality of an artifi-
cial intelligence agent: it segments the reality into discrete units, conceptualizes them as

named entities, and organizes these entities into hierarchies or relational networks.
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Query: (7, is_the_function_of, A)

Drug A Drug B

Query: (?, is_the_function_of, B)

Drug C

Query: (7, is_the_function_of, C)

Figure 1.3: Knowledge graphs use predicates to define entity relationships, enabling the
reuse of semantic structures like is_the_function_of across entities. This supports
consistent inference over symbolic concepts.
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On the other hand, the unstructured approaches, prominently featuring large lan-
guage models (LLMs) trained on massive web corpora, do not prescribe any explicit
structure. Continuing the drug search example above, in the unstructured approach, the
relation “ _is_the_function_of” can manifest in various forms with potential noise
and lack a standarised reference identifier. Similarly, the drugs themselves do not adhere
to a fixed or standardized naming structure. For instance, a drug search query posed to
large language models might be expressed in natural and ambiguous terms: “Do you
know when to use A-acid?”. In this scenario, the model will retrieve information about
the drug A through internal implicit associations, instead of utilizing a predefined pred-
icate. The LLM (unstructured) approach, therefore, does not seem to structure reality in
advance or impose standardised relation predicates to its training data.

However, this part of the thesis demonstrates that, regardless of whether a struc-
ture is predefined or not, training with a language modelling objective induces inherent
structures within the final embedding-encapsulated model, which serves as the bedrock
for both structured and unstructured approaches. These emergent structures enable the
model to recover meaningful relational patternsE — pertaining to the realities underlying
the data — solely based on the model’s learned parameters. The following chapters dive
into the details for both structured knowledge completion with language modelling and

completion and structural pattern emergence in large language models. Concretely,

1. Chapter @: We show how a language modelling objective can help recover the
structure of knowledge graphs and predict the missing links, thereby completing
the knowledge base and supporting downstream knowledge queries. The language
modelling objective can thus be a good alternative to classic structural recovery

objectives, like entity prediction.

2. Chapter E: We demonstrate how similar language modelling objectives also in-
duce structural patterns in transformer computation, which can then be extracted
and applied to enhance interpretability, transparency and safety within founda-

tional large language models.

By examining the effects of language modelling objectives on structure formation,
we find that even models from unstructured approaches acquire structures about the re-

alities underlying the data, supporting themselves to store knowledge and to behave in

2Sequential patterns can be seen as hyper-relational edges on a graph.
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the absence of predefined schematic structures. This connection between structured and
unstructured approaches allows us to understand structure formation and highlight its
particular role in achieving artificial intelligence, guiding our decisions on 1) when and
why to incorporate structures — such as for the purpose of efficient knowledge represen-
tation, post-training interpretability, repeatable queries with consistent conclusions, and
2) how to induce structures — either explicitly through predefined structures in data for

“shallow” model training or implicitly by training deep models on large corpora.
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Chapter 2

Language Modelling Completes
Knowledge Graph Structures

A version of this work was previously presented at a peer-reviewed conference. Please refer to
[Chen et al., 2021] for full citation.

Knowledge bases are one of the critical infrastructures empowering various common
Al applications, including but not limited to expert systems (e.g. IBM Watson), search
engines (e.g. Google Search), recommender systems (e.g. TikTok), social media (e.g.
X.com) [Noy et al), 2019]. They represent the structured paradigm for building knowl-
edge engines from curating highly structured data, e.g. knowledge graphs, that can serve
various downstream applications. In this chapter, we show that a language modelling
objective allows us to learn better multi-relational graph representations, leading to bet-
ter structure recovery and thus can be used to complete the knowledge base automat-
ically. Specifically, we extend the entity prediction (1vsAll) objective, which are the
off-shelf choice for knowledge base completion, by incorporating relation prediction.
The new training objective contains not only terms for predicting the subject and object
of a given triple (s, p,0), but also a term for predicting the relation type — predicting
any symbol using its context i.e. its surrounding symbols in the triplet. This precisely
matches the language modelling objective, in that we can treat the triplet as a sentence,
the subject/object/predicate as the tokens, and predict the target token by modelling the

context. We analyse how this language modelling objective impacts multi-relational
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learning for KBC: experiments on a variety of datasets and models show that the ob-
jective can significantly improve entity ranking, the most widely used evaluation task
for KBC, yielding a 6.1% increase in MRR and 9.9% increase in Hits@1 on FB15k-
237 as well as a 3.1% increase in MRR and 3.4% in Hits@1 on Aristo-v4. More-
over, we observe that the proposed objective is particularly effective on highly multi-
relational datasets, i.e. datasets with many predicates, and generates better representa-
tions when larger embedding sizes are used. The code for our experiments is available

at https://github.com/facebookresearch/ssl-relation-prediction.

2.1 Knowledge Base Completion as Language Modelling?

Aiming at completing missing entries, Knowledge Base Completion (KBC), also known
as Knowledge Graph Completion (KGC), plays a crucial role in constructing large-scale
knowledge graphs [Nickel et all, 2016a, Ji et al., 2020, Li et al., 2020]. In its essence,
KBC is a task that require the model to learn the structures expressed in the data and
thereby complete the missing entries. Over the past years, most research on KBC has
been focusing on Knowledge Graph Embedding (KGE) models, which learn represen-
tations for all entities and relations in a Knowledge Graph (KG), and use them for scor-
ing whether an edge exists or not [Nickel et al.,, 2016a]. Numerous models and archi-
tectural innovations have been proposed, including but not limited to translation-based
models [Bordes et all, 2013], latent factorisation models [Nickel et al, 20114a, Trouillon
et al, 2016, Balazevic et all, 2019], and neural network-based models [Dettmers et al.,
2018, Schlichtkrull et all, 2018, Xu et al/, 2020b]. Other more recent research has been
making complementary efforts on analysing the evaluation procedures for these KBC
models. For instance, Sun et al| [2020b] call for standardisation of evaluation protocols;
Kadlec et al| [2017], Ruffinelli et al| [2020] and Jain et al, [2020a] highlight the im-
portance of training strategies and show that careful hyperparameter tuning can produce
more accurate results than adopting more elaborate model architectures; Lacroix et al.
[2018] suggests that a simple model can produce state-of-the-art results when its training
objective is properly selected.

Taking inspiration from these findings, we explore a language modelling style train-
ing objective, where the three symbols in a triplet are all treated equally, as tokens, and

the target token is predicted by modelling the surrounding token. The main difference
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brought by this new objective is in that, aside from training models to predict the subject
and object entities for triples in a knowledge graph, we also train them to predict the
predicate, since now the predicate will simply be yet another token. This approach is
akin to using a masked language model-like training objective [Devlin et alJ, 2019]. As
we will elaborate, the simple change significantly improves multi-relational graph repre-
sentation learning across several KBC models. Empirical evaluations on various models
and datasets support the effectiveness of our new training objective: the largest improve-
ments were observed on ComplEx-N3 [[Trouillon et al, 2016] and CP-N3 [Lacroix et alJ,
2018] with embedding sizes between 2K and 4K, providing up to a 9.9% boost in Hits@ 1
and a 6.1% boost in MRR on FB15k-237 with negligible computational overhead. We
further experiment on datasets with varying numbers of predicates and find that relation
prediction helps more when the dataset is highly multi-relational, i.e. contains a larger
number of predicates. Moreover, our qualitative analysis demonstrates improved pre-
diction of some MaNy-To-MaNY [Bordes et al., 2013] predicates and more diversified

relation representations.

2.2 Literature Review: Design Space of Knowledge Base

Completion

A Knowledge Graph G C £ x R x & contains a set of subject-predicate-object (s, p, 0)
triples, where each triple represents a relationship of type p € R between the subject
s € £ and the object o € £ of the triple. Here, £ and R denote the set of all entities and

relation types, respectively.

Knowledge Graph Embedding Models A Knowledge Graph Embedding model, also
referred to as neural link predictor, is a differentiable model where entities in £ and
relation types in R are represented in a continuous embedding space, and the likelihood
of a link between two entities is a function of their representations. More formally,
KGE models are defined by a parametric scoring function ¢g : £ x R x £ — R, with
parameters 6 that, given a triple (s, p, 0), produces the likelihood that entities s and o are

related by the relationship p.

22



Scoring Functions KGE models can be characterised by their scoring function ¢,.
For example, in TransE [Bordes et al,, 2013], the score of a triple (s, p, 0) is given by
P9(s,p,0) = —||s+ p — o]|,, where s, p, 0 € R denote the embedding representations
of s, p, and o, respectively. In DistMult [Yang et al., 2015a], the scoring function is
defined as ¢y (s, p, 0) = (s,p,0) = S s;p;0;, where (-, -, - ) denotes the trilinear dot
product. Canonical Tensor Decomposition [CP, Hitchcock, [1927] is similar to DistMult,
with the difference that each entity = has two representations, x, € R* and x, € R*,
depending on whether it is being used as a subject or object: ¢y(s,p,0) = (s, P, 0,)-
In RESCAL [Nickel et al., 2011a], the scoring function is a bilinear model given by
¢o(s,p,0) = s'Po, where s,0 € R is the embedding representation of s and p, and
P € R*** is the representation of p. Note that DistMult is equivalent to RESCAL if P
is constrained to be diagonal. Another variation of this model is ComplEx [[Trouillon
et al|, 2016], where the embedding representations of s, p, and o are complex vectors
—ie.s,p,0 € C* - and the scoring function is given by ¢y(s,p,0) = R({s,p,0)),
where R(x) represents the real part of x, and X denotes the complex conjugate of x. In
TuckER [Balazevic et al., 2019], the scoring function is defined as ¢y(s,p,0) = W x4
S Xy p X3 0, where W € RFs**»>Fo ig 3 three-way tensor of parameters, and s € RFs,
p < R*», and 0 € R* are the embedding representations of s, p, and o. In this chapter,
we mainly focus on DistMult, CP, ComplEx, and TuckER, due to their effectiveness on
several link prediction benchmarks [Ruffinelli et all, 2020, Jain et al., 2020a].

Training Objectives Another dimension for characterising KGE models is their train-
ing objective. Early tensor factorisation models such as RESCAL and CP were trained
to minimise the reconstruction error of the whole adjacency tensor [Nickel et al, 2011a].
To scale to larger Knowledge Graphs, subsequent approaches such as Bordes et al. [2013]
and Yang et al| [2015a] simplified the training objective by using negative sampling: for
each training triple, a corruption process generates a batch of negative examples by cor-
rupting the subject and object of the triple, and the model is trained by increasing the
score of the training triple while decreasing the score of its corruptions. This approach
was later extended by Dettmers et al. [2018] where, given a subject s and a predicate p,
the task of predicting the correct objects is cast as a |£|-dimensional multi-label classi-
fication task, where each label corresponds to a distinct object and multiple labels can

be assigned to the (s, p) pair. This approach is referred to as KvsAll by Ruffinelli et al,
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[2020]. Another extension was proposed by Lacroix et al| [2018] where, given a subject
s and a predicate p, the task of predicting the correct object o in the training triple is cast
as a |£|-dimensional multi-class classification task, where each class corresponds to a
distinct object and only one class can be assigned to the (s, p) pair. This is referred to as
1vsAll by Ruffinelli et al/ [2020].

Note that, for factorisation-based models like DistMult, ComplEx, and CP, KvsAll
and 1vsAll objectives can be computed efficiently using GPUs [Lacroix et al., 2018,
Jain et al,, 2020a]. For example for DistMult, the score of all triples with subject s and
predicate p can be computed via E(s ® p), where ® denotes the element-wise product,
and E € RII** is the entity embedding matrix. In this chapter, we follow Lacroix et al.
[2018] and adopt the 1vsAll loss, so as to be able to compare with their results, and since
Ruffinelli et al| [2020] showed that they produce similar results in terms of downstream
link prediction accuracy.

Recent work on standardised evaluation protocols for KBC models [Sun et al, 2020b]
and their systematic evaluation [Kadlec et al., 2017, Mohamed et all, 2019, Jain et al.,
2020a, Ruffinelli et al., 2020] shows that latent factorisation based models such as RESCAL,
ComplEx, and CP are very competitive when their hyperparameters are tuned prop-
erly [Kadlec et alj, 2017, Ruffinelli et al}, 2020]. In this chapter, we show that using
a language modelling like objective can further improve their downstream link predic-

tion accuracy.

2.3 Transforming KBC Into Language Modelling Using

Aucxiliary Relation Prediction

We first recall 1vsAll, one of the typical training objectives used for learning a KBC
model [Ruffinelli et al), 2020]. In 1vsAll, KBC models are trained by maximising the
conditional likelihood of the subject s (respectively the object 0), given the predicate and
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the object o (respectively the subject s) in the triple. More formally:

argmax  [log Py(s | p, o) +log Py(o| 5.p)]

(s.p.0)€G
with log Py(o | s,p) = de(s,p,0) —log D _expldu(s.p,d)]  (21)
o'ef
log Py(s | p,0) = (s, p.0) —log Y _exp[du(s’,p,0)],
s'ef

where # € O are the model parameters, including entity and relation embeddings, and
¢y is a scoring function parameterised by . The terms Py(s | p,0) and Py(o | s,p)
correspond to predicting the subject entity s and the object entity o, respectively. These
two terms align with the entity ranking task commonly used for evaluating KBC mod-
els. However, this purely discriminative formulation restricts prediction to only the first
(subject) or third (object) positions, potentially overlooking structural signals that can
be gained by modelling task-irrelevant postions in the triple.

On the other hand, transitioning to a generative paradigm enables the model to cap-
ture more universal patterns in the underlying data distribution, despite not directly tied
to the evalution task. To leverage the advantages of both paradigms for KBC, we follow
the spirit of interpolating between generative and discriminative approaches [Bernardo
et al., 2007]. Concretely, the joint distribution FPy(s, p,0), central to generative mod-

elling, can be factorised in three ways:

PQ(Sapu 0) = P0(87p) P@(O | 3,]7)7
————

“object view”

PQ(Sapa 0) = P9<p7 0) P9(8 ‘pa 0)7

“subject view”

P9(87p70> = PB(‘SvO) P@(p | 870)'
—_—— —

“predicate view”

(2.2)

Each factorisation offers a distinct perspective on the dependencies among entities and
relations. To benefit from fuller views on the joint distribution while maintaining the
conditional modelling structure of 1vsAll, we propose incorporating the third view —
predicate prediction — into the training objective.

Specifically, we introduce predicate (relation) prediction as an auxiliary task to ex-
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tend the standard 1vsAll training objective. The new training objective not only con-
tains terms for predicting the subject and the object of the triple — log P(s | p,0) and
log P(o | s,p) in Eq. — but also a term log P(p | s, 0) for predicting the predicate
(relation typ) p:

arg max Z [log Py(s | p,o) +log Py(o | s,p) + Alog Py(p | s,0)]
0o (s,p,0)€G

with log Py(p | 5,0) = ¢p(s,p,0) —log Y exp [¢y(s,p’,0)],

p'ER

(2.3)

where A\ € R, is a hyperparameter that determines the contribution of the relation pre-
diction objective; we assume A\ = 1 unless otherwise specified.

This formulation can be viewed as a masked language modeling objective [Devlin
et al., 2019] over symbolic triples, where each element — subject, predicate, or object —
can be treated as a masked token predicted from the other two, with the triple functioning
as a fixed-length sentence. While it remains discriminative (i.e., we do not model the full
joint distribution or use autoregressive generation) in order to keep the strong classifica-
tion performance, the new objective allows the model to learn contextual dependencies
in all directions within a triple. This includes not only how entities depend on relation-
context pairs, but also how likely a relation is to hold between a given subject-object
pair. Compared to conventional approaches, the extra modelling on relation prediction
helps the model better differentiate between predicates, particularly those with similar
subjects or objects, or in knowledge graphs with many relation types. Section will
elaborate on how the new objective improves distinguishing predicates compared to the
standard approach. Computation-wise, this new training objective adds very little over-
head to the training process, and can be easily added to existing KBC implementations;
PyTorch examples are included in Section .

2.4 The Effects of Language Modelling on KBC Perfor-

mance

In this section, we conduct several experiments to verify the effectiveness of the language

modelling objective for KBC. We are interested in the following research questions:
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RQ1: How does the new training objective impact the results on downstream knowledge
base completion tasks across different datasets? How does the number of relation

types on the datasets affect the performance of new training objective?

RQ2: How does the new training objective impact different models? Does it benefit all

the models uniformly, or it particularly helps some of them?

RQ3: Does the new training objective produce better entity and relation representa-

tions?

Datasets. We use Nations, UMLS, and Kinship from [Kok and Domingos, 2007],
WNI18RR [Dettmers et all, 2018], and FB15k-237 [[Toutanova et al., 2015], which are all
commonly used in the KBC literature. As these datasets contain a relatively small num-
ber of predicates, we also experiment with Aristo-v4, the 4-th version of Aristo Tuple
KB [Mishra et al, 2017], which contains more than 1,600 predicates. Since Aristo-
v4 has no standardised splits for KBC, we randomly sample 20, 000 triples for test and

20, 000 for validation. Table m summarises the statistics of these datasets.

Table 2.1: Dataset statistics, where |€| and |R| denote the number of entities and predi-
cates.

Dataset |E] |R| #Train #Validation #Test
Nations 14 55 1592 100 301
UMLS 135 46 5216 652 661
Kinship 104 25 8544 1068 1074
WNI18RR 40943 11 86835 3034 3134
FB15k-237 27395 237 272115 17535 20466
Aristo-v4 44950 1605 242594 20000 20000
CoDEXx-S 2034 42 32888 1827 1828
CoDEx-M 17050 51 185584 10310 10311
CoDEx-L 77951 69 551193 30622 30622

Metrics Entity ranking is the most commonly used evaluation protocol for knowledge
base completion. For a given query (s,p,?) or (7, p,0), all the candidate entities are

ranked based on the scores produced by the models, and the resulting ordering is used
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to compute the rank of the true answer. We use the standard filtered Mean Reciprocal
Rank (MRR) and Hits@ K (Hit ratios of the top-K ranked results), with K € {1, 3,10},

as metrics.

Models We use several competitive and reproducible [Ruffinelli et al,, 2020, Sun et alJ,
2020b] models: RESCAL [Nickel et al., 2011a], ComplEx [Trouillon et al), 2016],
CP [Lacroix et al), 2018], and TuckER [Balazevic et all, 2019]. To ensure fairness in
various comparisons, we did an extensive tuning of hyperparameters using the valida-
tion sets, which consists of 41,316 training runs in total. For the main results on all the
datasets, we tuned A\ using grid-search. For the ablation studies on the number of pred-
icates and the choice of models, we set A to 1. This reduces computational overhead
while still allowing us to examine the impact of these two factors. Details regarding the
hyperparameter sweeps can be found in Section .

2.4.1 RQ1: Language Modelling on Different KBC Datasets

How does the proposed language modelling training objective impact knowledge base
completion for different datasets? To answer this question, we compare the perfor-
mance of training with relation prediction (the language modelling objective) and train-
ing without relation prediction (the standard entity prediction objective) on several popu-
lar KBC datasets. For the smaller datasets (Kinship, Nations and UMLS), we selected the
best model from RESCAL, ComplEx, CP, and TuckER. For larger datasets (WN18RR,
FB15k-237, and Aristo-v4), due to a limited computation budget, we used ComplEX,
which outperformed other models in our preliminary experiments.

Table summarises the results for the smaller datasets, where ¢ indicates train-
ing with relation (entity) prediction while X indicates training without relation (entity)
prediction. We can observe that relation prediction brings a 2% — 4% improvement for
MRR and Hits@1, as well as maintaining a competitive Hits@3 and Hits@ 10.

Table @ summarises the results for the larger datasets. Including relation prediction
as an auxiliary training objective brings a consistent improvement on the three datasets
with respect to all metrics, except for Hits@10 on WN18RR. Particularly, relation pre-
diction leads to increases of 6.1% in MRR, 9.9% in Hits@1, 6.1% in Hits@3 on FB15k-
237 and 3.1% in MRR, 3.4% in Hits@1, 3.8% in Hits@3 on Aristo-v4. Compared to
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Table 2.2: Test performance comparison on Kinship, Nations, and UMLS. EP = Entity
Prediction; RP = Relation Prediction. We conducted an extensive hyperparameter search
over 4 different models, namely RESCAL, ComplEx, CP, and TuckER, where the model
itself is also treated as a hyperparameter. Including relation prediction as an auxiliary
training objective on these three datasets helps in terms of test MRR and Hits@ 1, while
remaining competitive test Hits@3 and Hits@10. More details on the hyperparameter
selection process are available in Section .

Dataset EP RP MRR Hits@1l Hits@3 Hits@10

X vV 0920 0867 0970 0.990
Kinship ¢ X 0897  0.835 0.955 0.987
v v 0916 0866 0964 0.988
X vV 068 0493 0871 0.998
Nations ¢ X 0813 0701  0.915 1.000
v v 0827 0726 0915 0.998
X v 0863 0.795 0.914 0.979
UMLS ¢ X 0960 0930  0.991 0.998
v v 0971 0954 0986 0.997

WN18RR, we observe a larger improvement for FB15k-237 and Aristo-v4. One poten-
tial reason is that on FB15k-237 (|R| = 237) and Aristo-v4 (|R| = 1605) there is a more
diverse set of predicates than on WN18RR (|R| = 11). The number of predicates |R |
on WN18RR is comparatively small, and the model benefits more from distinguishing
different entities than distinguishing different relations. In other words, using lower val-
ues for A (the weight of the relation prediction objective) is more suitable for datasets
with fewer predicates but many entities. We include ablations on |R| in Section .
Additionally, we conduct experiments using CoDEx, where datasets of varying sizes
are created from the same data source. The results, summarized in Table @ show that
relation prediction consistently improves MRR and Hits@1 across the small, medium,

and large datasets.
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Table 2.3: Test performance on WN18RR, FB15k-237, and Aristo-v4 using ComplEXx.
EP = Entity Prediction; RP = Relation Prediction. Including relation prediction as an
auxiliary training objective brings consistent improvements across the three datasets on
all metrics except Hits@ 10 on WN18RR. On FB15k-237 and Aristo-v4, adding relation
prediction yields larger improvements in downstream link prediction tasks. More details
on the hyperparameter selection process are available in Section .

Dataset EP RP MRR Hits@l Hits@3 Hits@10
X v 0258 0212 0290 0.339
WNI18RR v X 0487 0.441 0.501 0.580
v v 0488  0.443  0.505 0.578
X v 0263 0187 0287 0.411
FB15k-237 X 0366 0271 0.401 0.557
v v 0388 0298  0.425 0.568
X v 0169 0120 0.177 0.267
Aristo-v4 v X 0301 0232 0324 0.438
v v 0311 0240  0.336 0.447

Significance Testing

To show that the improvements brought by relation perturbation are significant, we run
the experiments with five random seeds and perform the Wilcoxon signed-rank test over
the metrics obtained with and without relation prediction [Wilcoxon, 1992]. For sim-
plicity, we select ComplEx as the base model, given its robust performance across mul-
tiple benchmark datasets. We evaluate the impact of relation prediction by computing
the performance difference between ComplEx models trained with and without the aux-
iliary relation prediction objective. To assess statistical significance, we test the null
hypothesis that the median of these differences is less than or equal to zero — i.e., that
incorporating relation prediction does not improve performance over the standard 1vsAll
objective.

Table 2.§ summarises the result. We can observe that almost all p-values are roughly
0.03, which means that we can reject the null hypothesis at a confidence level of about
97%. The new training objective that incorporates relation prediction as an auxiliary

training objective significantly improves the performance of KBC models except for
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Table 2.4: Test performance comparison on CoDEx-S, CoDEx-M and CoDEx-L using
ComplEx. EP = Entity Prediction; RP = Relation Prediction. Relation prediction im-
proves most metrics. Details in Section .

Dataset EP RP MRR Hits@l Hits@3 Hits@10

v X 0487 0441 0.501 0.580
CoDEx-S

v v 0488  0.443 0505 0.578

v X 0366 0271 0.401 0.557
CoDEx-M

v v 0388 0298 0425 0.568

v X 0301 0232 0324 0.438
CoDEx-L

v v 0311 0240 0336 0.447

Table 2.5: Wilcoxon signed-rank test for ComplEx-N3 on several datasets. For each
dataset and metric, we report the corresponding statistics — i.e. the sum of ranks of pos-
itive differences — and the p-value as (statistics, p-value).

Dataset MRR Hits@1 Hits@3 Hits@10

WNISRR  (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (3.0, 0.76740)
FB15k-237 (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125)
Aristo-v4  (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125)

Hits@10 on WN1&8RR.

Ablation on the Number of Predicates

As previously discussed, relation prediction brings different impacts to WN18RR, FB15k-
237, and Aristo-v4. Since a notable difference between these datasets is the number of
predicates |R| (1, 605 for Aristo-v4 and 237 for FB15k-237, while only 11 for WN18RR),
we would like to determine the impact of perturbing relations with various |R|. In order
to achieve this, we construct a series of datasets with different |R| by sampling triples
containing a subset of the predicates from FB15k-237. For example, to construct a
dataset with only five predicates, we first sampled five predicates from the set of 237
predicates and then extracted triples containing these five predicates as the new dataset.
In total, we have datasets with |R| € [5, 25, 50, 100, 150, 200] predicates. To address the
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Figure 2.1: Relative changes between ComplEx trained with and w/o Relation Prediction
on datasets with varying numbers of predicates |R|. We experimented with 3 random
seeds. Larger bars mean more variance. Relative changes were computed with (m, —
m_)/m_, where m. and m_ denote the metric values with and w/o relation prediction.
A clear downward trend can be observed for datasets with |R| < 50 while 2% — 4%
clear increases in MRR, Hits@1, and Hits@3 are shown where |R| > 50.

noise introduced in predicate sampling during datasets construction, we experimented
with three random seeds. For convenience, we set the weight of relation prediction \ to
1 and performed a similar grid-search over the regularisation and other hyperparameters
to ensure that the models were regularised and trained appropriately with the different
amounts of training and test data points.

Results are summarised in Figure . As shown in the right portion of Figure ,
predicting relations helps datasets with more predicates, resulting in a 2%-4% boost in
MRR, Hits@1, and Hits@3. For datasets with fewer than 50 predicates, there is con-
siderable fluctuation in the relative change as shown in the left portion of the figure —
but a clear downward trend. These results verify our hypothesis that relation prediction
brings benefits to datasets with a larger number of predicates. Note that we did not tune
the weight of relation prediction objective A (and fixed it to 1), and this choice might

have been suboptimal on datasets with a fewer number of predicates.
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24.2 RQ2: Language Modelling on Different KBC Models

Table 2.6: Test performance comparison on FB15k-237 across 4 different models: CP,
ComplEx, RESCAL, and TuckER. We set the weight of relation prediction to 1 and per-
formed a grid search over hyperparameters. More details are available in the appendix.
While relation prediction seems to help all 4 models, it brings more benefit to CP and
ComplEx compared to TuckER and RESCAL.

Model Relation Prediction MRR Hits@1 Hits@3 Hits@10

X 0356 0262 0392 0.546
CP

4 0366 0274  0.401 0.550

X 0366 0271 0401 0.557
ComplEx

v 0382 0289  0.419 0.568

X 0356 0266  0.390 0.532
RESCAL

4 0359 0271  0.395 0.533

X 0351 0260  0.386 0.532
TuckER

v 0354  0.264  0.388 0.535

To measure how incorporating relation prediction (to induce a language modelling
objective) influences the downstream prediction accuracy of KBC models, we run ex-
periments on FB15k-237 with several models — namely ComplEx, CP, TuckER, and
RESCAL. For simplicity, we set the weight of relation prediction A to 1. As shown in
Table @, including relation prediction as an auxiliary training objective brings consis-
tent improvement for all models. Notably, up to a 4.4% and a 6.6% increase in Hits@1
can be observed respectively for CP and ComplEx. For TuckER and RESCAL, the im-
provements brought by relation perturbation are relatively small. This may be due to the
fact that we had to use smaller embedding sizes for TuckER and RESCAL, since these
models are known to suffer from scalability problems when used with larger embedding
sizes. The ablation on embedding sizes of the models follows after this paragraph. As
for the computational cost, the primary overhead arises from calculating P(p | s,0).
This increases the total computation to approximately 1.5 that of the original objec-
tive, which only involves P(s | p,0) and P(o | s,p). When using a GPU, the dominant

cost typically lies in matrix multiplications over all entities in the vocabulary, which is

33



largely determined by the choice of model. For instance, models such as TuckER and
RESCAL are more computationally intensive than CP and ComplEx. As a result, the
overall training time remains largely unchanged after incorporating relation prediction.
In our experiments, adopting the new loss led to only a 2% average increase in per-epoch

training time, although more epochs may be needed to reach convergence.

Ablations on Embedding Size

In our experiments, increasing the embedding size of the model leads to better perfor-
mance. However, there might exist a saturation point where larger embedding sizes stop
boosting the performance. We are interested in how perturbing relations will impact the
saturation point and which embedding sizes benefit most from it. Figure @ shows the
relationship between the embedding size and the MRR for CP on FB15k-237. At small
embedding sizes, perturbing relations makes little difference. However, it does help CP
with larger embedding sizes and delays the saturation point. As we can see, the slope of
the blue curve is steeper than the red one, which bends little between an embedding size
of 1,000 and an embedding size of 4,000. We can thus observe that perturbing relations

leaves more headroom to improve the model by increasing its embedding sizes.

2.4.3 RQ3: Qualitative Analysis of Entity and Relation Represen-

tations

In our experiments, we observe that relation prediction improves the link prediction ac-
curacy for MANY-TO-MANY predicates, which are known to be challenging for KBC mod-
els [Bordes et al., 2013]. Table @ lists the top 10 predicates that benefit most from
relation prediction. We rank the predicates by averaging the associated MRR of (s, p, ?)
and (?,p,0) queries. Table [A:ﬂl and Table @ list the top 20 queries of (s, p,?) and
(?,p,0) that are improved most by relation prediction. We can see that relation pre-
diction helps the queries like “Where was film Magic Mike released?”, “Where was
Paramount Pictures founded?”, “Which person appear in the film The Dictator 2012?”,
“Which places are located in UK?”, and “Which award did Vera Drake win?”.

To intuitively understand why the objective helps with these predicates, we ran t-SNE
over the learned entity and predicate representations. Reciprocal predicates are also in-
cluded in the t-SNE visualisations. We set the embedding size to 1,000, and use N3
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Figure 2.2: Hits@1 versus embedding size for CP on FB15k-237, each point represents
a model trained with some specific embedding size with (blue) / -out (red) perturbing
relations. The smallest embedding size is 25.

Figure 2.3: t-SNE visualisations for ComplEx embeddings, trained with relation predic-
tion (left) and without relation prediction (right). Red points and blue points correspond
to predicates and entities respectively. Dashed boxes highlight different clusters.
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Table 2.7: Top 10 predicates that are improved most by relation prediction.

/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position
/sports/sports_team/roster./baseball/baseball_roster_position/position
/location/country/second_level_divisions
/tv/tv_producer/programs_produced./tv/tv_producer_term/program
/olympics/olympic_sport/athletes./olympics/olympic_athlete_affiliation/olympics
/award/award_winning_work/awards_won./award/award_honor/honored_for
/music/instrument/family

/olympics/olympic_games/sports

/base/biblioness/bibs_location/state
/soccer/football_team/current_roster./soccer/football_roster_position/position

regularisation. Hyperparameters were chosen based on the validation MRR. We run t-
SNE for 5,000 steps with 50 as perplexity. As we can see from Figure @ there are more
predicate clusters in the t-SNE visualisation for relation prediction compared to without
relation prediction. This demonstrates relation prediction helps the model distinguish
between different predicates: Most predicates are separated from the entities (the pink
region) while some predicates with similar semantics or subject-object contexts form a
cluster (the red region); There are also a few predicates, which are not close to their pred-
icate counterparts but instead close to highly related entities (the green region). Table @
lists three example predicates for each region. Though there can be information loss dur-
ing the process of projecting high-dimensional embedding vectors into two-dimensional
space, we hope this visualisation suggests how relation prediction helps to learn more

diversified predicate representations.

2.5 Discussion

Limitations. We mainly focus on simple factorisation-based models. Future work
should consider analysing the proposed objective for more complex KBC models, such
as graph neural network-based KBC models, and on more datasets. Another direction is
to analyse the language modelling objective on broader downstream applications beyond
link prediction.
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Table 2.8: Three example predicates in each region of the t-SNE plot.

Pink Region

/base/schemastaging/organization_extra/phone_number./base/schemastaging/
phone_sandbox/contact_category

/location/statistical _region/places_exported_to./location/imports_and_exports/exported_to

/sports/sports_league/teams./sports/sports_league_participation/team

Red Region

/people/person/nationality
/people/person/religion

/soccer/football_team/current_roster./sports/sports_team_roster/position

Green Region

/education/educational _institution/students_graduates./education/education/student
/common/topic/webpage./common/webpage/category

/education/educational _institution/students_graduates./education/education/
major_field_of_study

Summary. This chapter proposes to use a language modelling like training objective
for training KBC models - by simply incorporating relation prediction into the commonly
used 1vsAll objective. Experiments show that this new learning objective is significantly
helpful to various KBC models. It brings up to 9.9% boost in Hits@1 for ComplEx
trained on FB15k-237, even though the evaluation task of entity ranking might seem
irrelevant to relation prediction. The results suggest that language-modelling-like, self-
supervised objectives can help models acquire structural knowledge. Moreover, even
though these objectives focus solely on local contexts —i.e., the immediate surroundings
of a predictive target — the induced model weights are still able to robustly recover the

global structures of the knowledge graphs.
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Chapter 3

Uncovering Interpretable Structures in

Pretrained Language Models

Parts of this work were previously presented in a preprint. Please refer to [Chen et al|, 2024]

for the full citation.

In the previous chapter, we observed that language modelling objectives effectively com-
plete knowledge graphs, indicating that these objectives can embed structural patterns in
their model weights. Atits core, a language modelling objective uses a token’s local con-
text to predict itself. Remarkably, this local approach enables models to infer broader,
global structures within structured data, such as knowledge graphs, particularly when
there is high contextual variety.m This prompts a natural question: Can language mod-
elling objectives capture global structures in any dataset, or are they limited to explicitly
organized data like knowledge graphs?

To answer this question, we study transformer based large language models (LLMs)E
trained on unstructured texts. Typically, LLMs are trained using autoregressive lan-
guage modelling objectives, where each token is predicted based on the model’s analy-
sis of all its preceding tokens in the context. We hypothesize that this local modelling in
LLMs allows them to capture global structures, as factorization models do, even when

trained on unstructured, potentially noisy datasets like web text. Accordingly, this chap-

"For example, when there is many diverse predicates in the knowledge graph.
2 Also known as foundation models for their general intelligence capabilities and applications across
diverse tasks.

38



ter seeks to uncover these latent global structures within LLMs. Our method decomposes
the transformer’s monolithic computations into an ensemble of atomic computational
paths, where each path resembles a factorization model, enabling structure recovery as
in knowledge graph completion (see Chapter ). In factorization models and knowledge
graph completion, structures are typically limited to trigrams, whereas here they can
potentially span n-grams with sufficient compute budget.E Using this method, we un-
cover and reconstruct structures embedded within LLLMs that reflect patterns from their
unstructured training data — such as common English phrases and domain-specific key-
words from programming. Thus, despite training on unorganized texts, i.e. data without
any structures, large language models ultimately learn and encode meaningful structures
underlying the data through language modelling objectives. Since these structures are
intrinsic to the trained model, they provide a basis for interpreting LLM behaviour with-
out requiring external benchmarks, enabling data-free interpretability and transparency.

We explore several applications of these intrinsic structures for language models.

* Symbolic Interface. Constructing symbolic interfaces for neural language models
by sketching their (or their components’) computation with the n-gram structures

embedded in the model weights.

* Behaviour Search. Searching key n-grams in the model internal to locate and
measure specific behaviours of interest, providing a deeper, structural profiling of

model behaviour beyond surface-level probing.

* Model Diff. Enabling data-free comparison of models by analyzing differences in

their n-gram structures, e.g., before and after fine-tuning.

Our case studies establish initial evidence for these applications with a few new inter-

pretations of LLM behaviours.

* Some feedforward networks (FFNs) appear to handle simple grammatical tasks,
such as adding the suffix “-ly” to preceding tokens, complementing recent findings
that FFNs store factual knowledge [Geva et al/, 2021}, 2022].

* LLMs acquire different bigram structures at varying speeds during pretraining. In

3We leave as future work scaling the method and finding n-gram structures for n > 3.
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OLMo, unique 1-to-1 bigrams like (&, amp) are acquired quickly while many-to-

many bigrams like (at, least) i are initially promoted and later down-weighted.

* Vertical (downstream) finetuning, such as finetuning for coding tasks, raises the

ranking of coding-related n-gram structures within the LLMs.

e Alignment finetuning through RLHF [Bai et all, 2022] conceals toxic n-gram
structures from the surface-level outputs. Yet significant portions of toxic n-gram

structures still reside within the model, making it susceptible to “jail breaking”.

These findings contribute insights toward the responsible and transparent use of LLMs.

3.1 Interpreting LLMs by Uncovering Hidden Structures

Large language models (LLMs) are becoming increasingly prevalent as the univer-
sal knowledge engine, supporting a wide range of tasks, especially generative applica-
tions [Wei et al/, 2021, Radford et al/, 2019, Brown et al., 2020, Touvron et al., 2023a,b].
Despite their impressive capabilities, their opaque nature raises questions about their
inner workings and the need for attribution to understand model behaviour. Mechanis-
tic interpretability (MI) has emerged as an alternative to traditional attribution meth-
ods [Lundberg, 2017], focusing on tracing model behavior to internal structures rather
than to the input [Bereska and Gavves, 2024, Ferrando et al., 2024].

Most MI research seeks to reveal the learned “algorithms” embedded within model
computations, often using a hypothesis-and-dataset-driven approach. This approach typ-
ically involves forming a hypothesis, selecting a probing dataset, applying techniques like
path patching [Wang et all, 2022] or causal tracing [Meng et al., 2022], iteratively re-
fining the hypothesis in response to findings. Although valuable, this hypothesis-driven
MI approach may restrict open-ended exploration, which is crucial for uncovering global
behavior as did in human behavior studies [Skinner, 1965, Simon et all, 1990, Zipf,
2016], mapping model knowledge, and indexing behaviors to computation. Ultimately,
MI aims to uncover and label structures within the monolithic computations described
by the large neural models, with which users can index, associate and attribute various

model behaviours to distinct aspects of the model operations.

4Many-to-many refers to the fact that there are rich continuations after the token at and precedings
before the token least.
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As we see in Chapter , factorization-based models (FMs) with language modelling
objectives demonstrate that, after training, recovering structures can be as straightfor-
ward as computing (parameterized) inner products between embedding matrices [Trouil-
lon et all, 2016, Lacroix et al., 2018, Balazevic et al}, 2019] — revealing that these em-
bedding matrices, derived from language modelling optimization, often store patterns
aligning with underlying structures in the data, if we query them through proper opera-
tions e.g. relational weighted inner products. Given that large language models (LLMs)
are similarly composed as an embedding-encapsulated system — an embedding layer, a
central transformer “body”, and an unembedding layer — trained using language mod-
elling objectives, we hypothesize that similar structures latent in the model may also
emerge in these large language models. We are interested in finding the structures and
investigate whether such structures could facilitate mechanistic interpretability in LLMs.

To achieve this goal, this chapter introduces a method for uncovering latent struc-
tures by decomposing a transformer’s computation into a set of distinct input-to-output
computational paths, each of which begins with an embedding layer and ends with an
unembedding layer — mirroring factorization-based models for knowledge base comple-
tion. By isolating these paths and systematically evaluating them in the input space, our
method reveals n-gram structures embedded in the model’s computations, analogous to
how FMs reveal relational patterns in knowledge graphs.

We further discuss the relationship between such decomposition and approximat-
ing the original computation using Taylor Expansion. Despite not fully approximating
the original transformer computation, the identified n-gram structures are useful for in-
terpreting large language models as we will elaborate in our case studies. Figure
illustrates the workflow. We present a set of case studies on several autoregressive large
language models (LLMs) from Llama and OLMo families with varying sizes. Our case
studies illustrate that these isolated computational paths and the n-grams they retrieve

offer valuable tools for interpreting LLLM in multiple scenarios:

* i) revealing inner workings of LLMs where we identify specific functions of FFNs
and attention heads, such as adding *“-ing” suffixes (Section );

* ii) analysing pretraining dynamics where we observe distinct learning patterns for

various bigrams e.g., “at least” is initially promoted and later suppressed in OLMo

(Section );
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Figure 3.1: The uncovered n-gram structures can be seen as a reformatting of the corre-
sponding large language models. These n-gram structures are derived from decomposing
the transformer computations into smaller units, from where we can recompose matrix
factorizations. And the identified semantic structures can support applications in inter-
pretability and transparency.

* iii) assessing finetuning effects where we reveal model knowledge via domain-
specific n-grams with applications in quantifying toxicity levels, finding, perhaps
unexpectedly, that reinforcement learning from human feedback (RLHF) align-
ment [Bai et al., 2022] does not completely eliminate toxicity (Section ).
These findings support the development of more interpretable, transparent and

responsible applications of LLMs.
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3.2 Literature Review: Transformers and N-grams

Interpreting transformers. There has been much effort in interpreting the inner com-
putations of transformer models. In particular, mechanistic interpretability [Ferrando
et al,, 2024|] focuses on reverse-engineering such computations by identifying, clustering
and labelling model behavior [Shah et al., 2024, Meng et al., 2022, Bricken et al/, 2023]
in human understandable terms and attributing them with certain model components,
e.g., MLPs [Geva et al., 2021, 2022], or typical “circuits” [Conmy et al/, 2023, Ferrando
and Voita, 2024]. Recent work discussed limitations of currents approaches to MI. For
example, Templeton et al, [2024] found it generally hard to conclude neuron-level in-
terpretabilities, compared with feature representations; while Bolukbasi et al. [2021],
Goldowsky-Dill et al, [2023] points out that conclusions drawn are generally limited to
the chosen data distribution. As our approach focuses on manipulating functions, it does
not require extra datasets that are used for probe fitting in methods such as Belrose et al.
[2023] nor sampling, as needed by [Conmy et alJ, 2023, Ferrando and Voita, 2024, |Voita
et al,, 2024]. On a high level, allowing singling out any portion of compute from the
original monolithic transformer, our expansions abstract and generalize previous char-
acterizations of the computational paths [Veit et al), 2016, Elhage et al), 2021]], where
non-linear components with significant roles, e.g. layernorm and MLPs, are either ig-
nored or over-simplified for the ease of analysis. Additionally, zero ablations (or knock
out) [Olsson et all, 2022] and direct logits attributions [Wang et al., 2022] are linked to

particular instantiations of zeroth-order jet expansions [Chen et al., 2024].

The resurgence of n-gram models. The early applications of n-gram models for lan-
guages dates back to [Shannon, 1948], where n-grams were used to model the statistics
of English. In essence, these n-grams captured structure underlying the English data
they modeled: which words usually go together and which do not. The n-gram based
approaches have since then been vital in natural language processing, particularly for
general language modelling [Goodman, 2001]] with applications like machine transla-
tion [Brants et al., 2007]. Recently, there have been regained interests in combining
n-gram with neural network based approaches [e.g. Liu et al}, 2024b]. Several recent
works have also explored the relationships between LLMs and n-gram language mod-

els, such as analysing the representational capacity of transformers to emulate n-gram
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LMs [Svete and Cotterell, 2024], and measuring the agreement between LLM predic-

tions and curated n-gram rule sets [Nguyen, 2024].

3.3 Decomposing Transformers for Structural Recovery

Large language models are often based on the transformer architecture [Vaswani et al,
2017]. The transformer, in its original formalization, was optimized for leveraging the
SIMD (single instruction multiple data) paradigm offered by the GPU for fast parallel
processing sequences. Despite its efficiency, this formalization is not designed for under-
pinning any human-understandable structures embedded in the model. To enable struc-
tural recovery similar to how a factorization model does on a knowledge graph (Chapter
), we need to decompose the transformer computation into smaller and easier-to-analyse
units. A straightforward way is to cluster activation patterns on external datasets and
treat components reacting similarly to a group of data points as a unit [[Voita et al., 2024,
Ferrando and Voita, 2024, Ferrando et all, 2024]. However, the recovered structures
will heavily depend on the choice of data in this case, undesirable for understanding the
model’s global behaviour.

Luckily, transformers, despite consisting of complicated modules like self-attention,
follow a simple recursive residual paradigm, where multiple identical architected resid-
ual blocks [He et al., 2016] are stacked together. We can exploit this fact to decompose
computations into a set of atomic paths, each of which behave like a factorization model
and enable latent structure recovery. Notation-wise, we operate at the granularity of
residual blocks (e.g., self-attention or MLP blocks). This notational choice simplifies
our presentation, while aligning with previous literature [[Veit et al., 2016], and main-
tains practical relevance given the prevalence of residual computation for real-world ap-
plications [Dosovitskiy et al., 2020, [Touvron et al., 2023a,b].

3.3.1 Neural Networks with Recursive Residual Links

We start by reviewing the archetypal computational structure of recursive residual nets,
which feature transformers prominently. Specially, we focus on neural network architec-
tures where the main body comprises multiple recursive residual blocks, with input and

output managed respectively by an encoding and a decoding module. Such models fall
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Figure 3.2: Embedding “sandwiches” are typical architectures for dealing with discrete
and finite inputs to the neural networks. For example, the factorization based models for
knowledge graph completion and the transformer for textual sequence completion.

into the same category of embedding-encapsulated models as the factorization models
do, where the body is “sandwiched” between two embedding layers (see Figure ).
Formally, let Z be an input space. For example, this can be sequences of tokens.
Denote ¢ € N7 as the number of classes, such as the vocabulary size in a language model.
Define ) = R€ as the space of output logits, which correspond to the unnormalised over
the ¢ classes. Let d € N7 represent the dimensionality of the hidden representations.

We are concerned with functions g : Z — ) described as follows:
gq=vohpon, where hy:R* = R? hp =08, (3.1)

where L € NT is the number of residual blocks (e.g. recursive depth), n : Z — R?is
an input encoding module (e.g. token embedding layer), () denotes repeated functional

composition, and

B, : R — RY, for [ € [L],

B =id +, iR —, R (3.2)
v:RY =Y, v(z) =U - vp41(x),
U e R Yig1 : R — RY (3.3)
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are respectively residual blocks with non-linearities ~;’s (e.g., input-normalized causal
self-attentions or MLPs), and the output decoding module (e.g., an unembedding projec-
tion U after a layer normalization v71); id is the identity map. We leave all parameters
implicit and assume all functions are infinitely differentiable C*°.

For transformer based language models, the model is optimized with a language
modelling objective, where the next token is predicted based on analysing all the prior
tokens in the local context. The function ¢ therefore outputs unnormalised conditional

probabilities (or logits) in that

IP,(“z belongs to class i”|z) = Softmax[¢(z)];, for z € Z.

The recursive residual links are the critical ingredient that manages the information
flow in the transformer. By carrying forward the outputs from each layer along with
the embedded input, the recursive residual connections enable each subsequent layer to
access not only the immediate computations of the previous layer but also the aggregated
results from all prior layers. The recursive residual links thus facilitate the “storage” of
computations from all preceding blocks along with the embedded input, leading to the

accumulation of information across the model’s depths.

3.3.2 Rewriting Residual Computation for Various Purposes

Although residual links have mainly been visualized as arrows connecting stacked mod-
ules in the mainstream expression of Eq. , we note that this is a perspective that
renders their role in easing the training of deep networks. Such an expression of Eq.
, suited for developing and training the deep residual nets, might not be suitable
for analysing and interpreting them. Therefore, rewriting them in other ways become
necessary for post training analysis and interpretability. Figure @ summarizes several

rewritings for different purposes.

Nested update accumulation Notably, as visualized in Figure @ (b), we can rewrite

the recursive computation of Eq. by accumulating all the prior block outputs up to
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Figure 3.3: Various expressions of residual stream, each emphasizing a different aspect.
(a) a visual expression adapted from [IHe et alJ, IZOId, |Vaswani et alJ, 017|], highlighting
the identity shortcuts which ease the training of very deep models. (b) a visual expression
adapted from [lElhage et alJ, |2021, bostalgebraisd, |2021], highlighting the updates being
written into the residual stream which serve as a communication channel. (c) a visual
expression adapted from [|Veit et alJ, IZOld], highlighting the unrolling of all the residual
links (d) a visualization highlighting our proposed decomposition in Section into
separated input-to-output computational paths which are useful for interpretability. For
a linear residual net, (a)-(d) are equivalent expressions.

block | € L], assuming hy = 7:

l

hy = (Oé-:ﬁj) on=mn+ Z%‘ ohj_q
. g (3.4)

qzvon—i-ZUOfylohl,l.
=1

lElhage et all [|2021|] introduces the term residual stream to describe h;, while similar
concepts like “residual bus” can be traced back to |[-Iochreiter and Schmidhubeﬂ [|1 997|]

and ISrivastava et alJ [tZOlSI]. Such rewritings of recursive residual links have been widely
, hostalgebraistl, |2021], high-
lighting the updates produced by each block (e.g. the self-attention block or the FFN

applied in the mechanistic community [lElhage et alJ, |2021

block in the standard transformer) being written into the residual stream which serve as
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a communication channel.

Gradient paths Similarly, Veit et al. [2016] describe and study the unrolled structure
of the final residual stream expressed as hy = 1+ Zle 7; © hj_1, which reveals a num-
ber of paths from the input to the decoder (rather than the output), growing linearly with
the network depth L. This expansion is illustrated by the three pathways (black arrows)
leading to the node v (red circle) in Figure @ (c) for a case of two-layer residual archi-
tecture. Because the differentiation is a linear operator, this kind of rewriting is useful
for analysing the gradient flow during backpropagation, where one can track common
issues in training deep neural networks, such as gradient vanishing and gradient ensem-
bling from different paths. However, this rewriting alone does not lend itself directly
to analysing the model’s intrinsic input-output functional relationships. To “mechanis-
tically” understand the model’s behaviour, a further decomposition is needed to reflect

the internal structure underpinning the model’s knowledge possession.

3.3.3 Rewriting Recursive Residual Networks into Factorizations

So far, we have described several rewritings of a recursive residual computation graph,
each for a different purpose. For instance, Eq. @ decomposes the original computa-
tional graph into a series of additive terms. Each term builds incrementally on the previ-
ous ones, forming a hierarchical structure. Despite resembling a series expansion (e.g.,
a Fourier Expansion), the terms in this rewriting are not sufficiently “atomic” — the in-

terdependency among terms and their intertwined roles complicate direct interpretation.

Decomposing recursive residual networks into 2” input-output paths To systemat-
ically decompose the nested terms in Eq. @, we observe that each v; takes as input a sum
of upstream terms. Let us consider a sum x; + x5 as the input signal. If ; preserves addi-
tion, i.e. itis an additive map [Reed and Simon, 1980], then ;(x1+x2) = v (x1)+vi(x2),
naturally expanding the nested terms into distinct chains of dependencies that trace back
to the input when applied at all residual links. The original computational graph can then

be expanded as a sum of 2” unique paths. Each path applies L transformations, where
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each transformation is either v; or id. Formally, we can rewrite ¢ by

qg=vo{O(id+v)}on
=wvo( Z O on

se{0,1}F

= Y vo(Of") on (3.5)

se{0,1}F

= D> fe

se{0,1}F

Here s = (sy, $9, ...51,) is an L-bit binary vector in the set of {0, 1}, indicating a unique
path configuration. s; = 1 represents the path using the ~; transformation. s; = 0 repre-
sents the path using the identity transformation id. (OF_,~," is the sequential composition
used by the path according to s. This rewriting reveals that the original recursive residual
computation behaves as an ensemble of 2% increasingly complex input-to-output com-
putational paths fs : Z — ) sharing L core components. The complexity of a path is
determined by the number of non-identity transformations it involves. Thus the hier-
archy of the paths implies interesting properties of the recursive residual computation.
For example, simpler paths with fewer ~; terms might capture broad and abstract data
patterns while more complex paths might capture finer details and potentially nuanced
noise. Moreover, these paths include “non-continuous”, where one path can skip one or

several blocks and directly go to the later portion of the computation graph.

Linear recursive residual networks as an ensemble of factorization models In the
real domain, linear +’s are additive maps. So if we assume all 7’s are linear, such
that v, (z) = Az, forl € [L], and assume the encoder n(x) = Fz and the decoder

v(z) = Ux then the result of the above decomposition turns out to be an ensemble of

g= ) U (H A;) E (3.6)
Se2lL]

les

factorization models:

where 2! is the power set of [L] which contain 2¥ elements, meaning S could for ex-
ample be {1} or {1, 2} etc. Let us denote Wg = [, A;, which is a d x d projection
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matrix, and fs(x) = Wsx denotes the mapping of the selected path. So we have

g= Y UWsE"
Seall]

which is exactly a generalized factorization models where U € R*?, E € R are the
two embedding matrices wrapping the g matrix. From this we can see that a linear
transformer boils down to an ensembling of 2© weighted matrix factorization UWsE' ",
where Wg € R4 is the weighting matrix between U and E. Akin to how predicates
(relations) weight the subject embeddings and the object embeddings, here g plays a
similar role as a special kind of global predicates (and self-attention might act as local
predicates as our ongoing work shows). And most importantly, the outcomes from these
individual factorization models Dg = UWgET € R*¢ becomes a database storing the
¢ X c interactions between the c tokens, resembling how a factorization model based
scoring function stores the links on a knowledge graph. These direct readouts from the
individual input-output paths thus recover the latent input-output structure underlying the
model computation. When applied to language models, we are equivalently converting
a large language model into a set of factorization models and thus into their associated
token interaction databases — a symbolic reformatting into a set of bigram databases,
where high-scoring entries reflect meaningful information structures about the training

dataset. Figure @ illustrates this process.

Non-linearity in 7;’s  In practical residual architectures, however, ; are typically non-
linear and do not preserve addition — meaning v;(x; + x2) can not be expanded into
separate terms associated with each individual upstream input x;. As a result, nested
terms in Eq. @ are retained and the decomposition into 27 paths is not immediately
possible. However, we show that we can still single out any target computational path
from the super exponential set of block combinations as we do for the above linear
case and empirically obtain meaningful structural recovery as we show in Section
Despite the practical transformer’s non-linearity, we argue that this simple method re-
sembling the factorization based models enable meaningful structure recovery, of which
the effectiveness is validated with our case studies. In addition, the rewriting error can
be reduced via higher-order expansions with jets as we present the method in a follow-

up work of this chapter [Chen et al/, 2024], where we propose to use jets expansions to
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Figure 3.4: Cartoon of the process of deriving bigram databases Dg from the embed-
ded factorization model in each expanded input-output path fs for a two-layer recursive
residual net. For example, Dyyy is derived from the path f{;,. These bigram databases
can be used to depict their corresponding paths to a certain extent.

handle non-linearities.

3.4 Extracting N-gram Structures from Pretrained Lan-

guage Models

Now that we have established that factorization models can be pinpointed within (linear)

transformers, we can extract symbolic knowledge bases systematically from pretrained
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language models. These knowledge bases, represented in n-gram formats, can be used to
analyse structural information captured by large language models, thus bridging the gap
between arithmetic computations (e.g. matrix multiplications) and interpretable struc-
tures (e.g. domain keywords or other semantically meaningful units). As stated above,
the practical transformer contains non-linear components such as normalization func-
tion before input to each module. Implementation-wise, we chose to incorporate these
normalization functions into the input-output paths, and empirically we find these non-
linearities improve the quality of the extracted bigrams compared to using purely linear
paths [Elhage et all, 2021].

This section details our algorithms for extracting n-gram knowledge bases from the
factorization models embedded in transformer-based LLMs, specifically on unigrams,
bigrams, and trigrams. Due to computational constraints, higher-order ngrams with n >
3 are left for future work. Positional embeddings and the discussion on their choices
(absolute learnable positional embeddings v.s. relative positional embeddings) are also

excluded to avoid additional complexities beyond this study’s scope.

3.4.1 Bigrams

We focus on bigrams, as they are the first studied in the literature [Elhage et al., 2021].
Algorithm [I| outlines our approach to computing pairwise token interaction scores for
bigrams using token embeddings (£), an unembedding matrix (U), and paths through
selected network components. The algorithm can be extended to accommodate any com-
putational path among the 2% possible paths through the transformer blocks. In this
study, we consider the following path options and use OLMo [Groeneveld et all, 2024]
as a demonstrative model in the algorithm:

1. Direct Path: This path processes embeddings directly without intermediate trans-
formations, as described in Elhage et al, [2021]. Additionally, our algorithm
incorporates the non-linearities presented in the OLMo architecture. The token
embeddings (£) are normalized using RMS normalization (RMSNorm), and the
normalized embeddings are projected onto the unembedding space to compute the
interaction scores, represented as Dy 1. This bigram database corresponds to
the path represented as f3.
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2. Single FFN Path: This path includes a single feed-forward network (FFN) block
into the direct path. The token embeddings are first normalized using RMSNorm,
passed through the FFN, and normalized again. The resulting embeddings are
projected onto the unembedding space to compute the interaction scores. This

bigram database corresponds to the path represented as firpy;}.

3. Merged Path with Multiple FFNs: This option allows merging a list of selected
FFNs along with the direct path. This bigram database corresponds to the path

represented as firpy, . rrn;, 3. For this path:

10

(a) An accumulation tensor (e) is initialised with the normalized embeddings
(e + RMSNorm(FE, ¢)).

(b) For each selected FFN in the set, embeddings are normalized, processed
through the FFN, and normalized again. The FFEN outputs are accumulated

into e.

(c) After processing all selected FFNs, the final interaction score is computed

as Dr .1, normalized by the number of FFNs plus one direct path (|/C| + 1).

In all paths, a SoftMax operation is applied to the unnormalised scores D 1, along
the first dimension, ensuring interpretability as probabilities. In essence, the algorithm
evaluates these paths over the vocabulary space by wrapping the selected components
with the token embeddings (£) and the unembedding matrix (U). The final output is a
2D tensor D7 44 that captures the pairwise interactions between tokens 7" and 7' + 1.
This tensor serves as a quantitative approximation of a bigram statistic P, (zr+1|2r, . .. ),
revealing the token interaction dynamics embedded in the selected path(s). This bigram
algorithm can be extended to encompass the full residual computation rather than focus-
ing on partial computations. We refer to the results derived from this specific path choice
as naive bigrams. However, naive bigrams have limitations: they cannot describe arbi-
trary paths of interest, nor do they facilitate the analysis of path contributions to model

behaviour. Therefore, we skip them in the empirical study.
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Algorithm 1: Bi-gram Score. Compute 2-gram token interaction graph em-
bedded in embeddings, unembeddings and FFNs. Applicable to the OLMo

architecture with vanilla attention and non-parametric RMSNorm

Input: Token embeddings £/, unembedding matrix U, path option p, a set of
components C along the specified path

Output: D711, a 2D tensor of pairwise token interactions

Function bigram(F, U, p,C):

if pis direct path then

x < RMSNorm(F €) ; // Apply RMS normalization

Drpyq < zUT, // Project onto unembeddings

else if p is single FFN path then

x < RMSNorm(F ¢);

x < FFN(z);

x < RMSNorm(z, €);

Drrig < 2UT;

Ise if p includes Feed-Forward Networks (FFNs) then

e < RMSNorm(FE, €) ; // Initialize accumulation

foreach FFN € C do

// Normalize embeddings for FFN computation

x < RMSNorm(E¢€);

// Perform FFN computation

x < FFN(z);

// Normalize FFN output and accumulate

[¢2)

x < RMSNorm(z, €);

e+ e+ ux;

// Compute final interaction score across layers

DT,T+1 <— BUT;

Dr 1y,
Cl+1 °

Apply softmax on Dy 1, along dimension 1;

Drrir +

return D774
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3.4.2 Extension to Unigrams

Unigrams can be obtained via finding the stable state of the Markov transition equation
defined via the bigrams conditional probability (Algorithm ). The algorithm calculates
unigram scores by first deriving the Markov transition matrix from bigram probabilities
using the direct path, then performing an eigendecomposition to identify the steady-state
eigenvector (A = 1), which represents the unigram probabilities, and finally returning

this as the unigram score.

Algorithm 2: Unigram Score. Applicable to the OLMo architecture with

vanilla attention and non-parametric RMSNorm.
Input: Embeddings £, Unembeddings U, RMSNorm constant e

Output: D74, a 1D tensor storing individual token score, representing their
prominence within the model.
Function unigram(F, U, ¢):
Obtain transitions Dy 1y < bigram(E, U, direct path,();
Initialize the steady state Dpq as a 1D zero tensor;
Compute eigenvalues and eigenvectors
{N\i}, {pi} < eigen_decompose(Drri1);

// Loop over eigenvalues to identify the stable state
foreach \;, p; in {\;},{p;} do

if \;, == 1 then

t Dryq < s

return Dpq;

3.4.3 Extension to Trigrams

Calculating trigrams or skip n-grams becomes more nuanced because it requires unpack-

ing the mechanism of self-attention modules.

Self-Attention: Beyond Immediate Tokens Self-attention enables a model to attend
to tokens beyond just the immediate neighbours (e.g., bigrams). By applying one self-
attention layer, the model collects information from tokens farther away in the sequence.

For instance:
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* Predicting Token 7'+ 1: Using the representation at position 7', one self-attention
allows the model to attend to any previous token k (k < T"). The information flow
can be represented as:

T+1 « T <+ k
~—~ ~—~
time step  time step
Here, T passes relevant context from k to 7"+ 1, creating a chain of dependencies

over time steps.

Skip N-Grams: Information Steps The above equation uses time steps as the coor-
dinates for a stream of tokens. However, a different coordinate axis will reveal more
informative reliance among tokens. Skip n-grams view the same information flow from
an information step perspective, rather than a time step. For instance, the skip trigram

process looks like this:

n+1 — n — n—1
~— ~—

information step  information step
In this view:
¢ n carries relevant context fromn — 1 ton + 1.

* This contrasts with bigrams, where n — 1 passes information directly to n + 1

without intermediary steps.
Identifying such patterns embedded in the model can be useful to understand what kind

of knowledge is being stored in the model.

Example: Skip N-Grams in a Sentence Consider the sentence: “Lemma (Properties
of Jets) Let s be the function to be approximated.” If there is a sufficient number of
similar sentences in the training dataset, for example the training dataset contains heavy

portion of maths texts, then the model would capture skip-trigrams like:
e Token z,,_1: “Lemma”
e Token z,: “Let”
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e Token z,,11: “s
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Connecting Self-Attention with Skip Trigrams We can obtain skip trigram statistics
relating to Py (z,|25-1,. .., Zn—2,...), where dots indicate any number of interceding
tokens, by focusing on paths that contain one self-attention module and possibly filtering
out all paths that involve more than one self-attention. In general, paths with more self-
attentions will have higher n.

Algorithm @ describes in detail how we obtain the trigrams. During the calculation
of the attention score between token 7" and &, the current token 7" becomes a bucket for
storing several contextual token & along with their weightings, and pass them later to the
target token 7"+ 1 with weighting. The big 3D tensor for describing triplet interactions
among (k,T,T + 1) is decomposed into matrices from two steps 7' — k and k —
T + 1. In other words, we trace the indirect influence of each context token k’s onto the
(T, T + 1) pairings by performing a non-contracted tensor productE between the " — k
messaging matrix and the £ — 7" 4 1 messaging matrix.

Such n-gram statistics extracted directly from large language models can serve as a
data-free tool to sketch LLMs via casting them into (symbolic) n-gram databases. Thus,
they allow us to perform symbolic model comparison between any two models that share
a common vocabulary, as opposed to taking differences in the parameter space, which is

harder to interpret and only possible for models with the same architecture.

31t is interesting to see the non-contracted tensor products become the key operators for unpacking
transformer computation and derive interpretable structures. Its contracted version, matrix products,
works well when training deep neural networks on GPUs, where the SIMD paradigm prefers massive
parallel ALU computation and accumulating the intermediate computation results rather than caching
them all in memory and sequencing the computation. However, when we move to the interpreting neu-
ral network phase, it seems that accumulating the intermediate results all the way forward, i.e. the “deep”
computation, can be less relevant compared to the “wide” computation, where non-contracted tensor prod-
uct can keep track of all combinations of the indices — in language models indices correspond to tokens —
without reducing them via summation. With “wide” operators like non-contracted tensor product, we can
capture global information flow inside the entire vocabulary space, without collapsing higher-order token
interactions. The drawback is that it requires large amounts of memory to store all the interactions. We
foresee that there is a hardware lottery [Hooker, 2021] for language models interpretability akin to how
training deep language models favors GPUs. For example, in this chapter, we do not use any GPUs but
adopt CPUs with 1 TB memory.
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Algorithm 3: Trigram Score. Compute 3-gram token interaction graph embed-
ded in a self-attention layer via sparsely joining all attention heads. Applicable
to the OLMo architecture with vanilla attention and non-parametric RMSNorm

Input: embeddings £, unembeddings U, attention weights W, Wy, W, W,
RMSNorm constant €, head size Dy, target head indices heads,

Output: D7 71: asparse 3D tensor storing interactions

e < RMSNorm(FE, ¢€);

Initialize Dy 741 as zero tensor;

for h € heads do

Obtain current head dimensions H = [hDy, : (h + 1) Dp];

Obtain QK matrix W < WqT ] Wi,

Obtain OV matrix V < W[, WO[TH’:};

e\i;[/% :

Apply softmax normalization on D7, along dimension 1;

Sparsify Dy, based on threshold to obtain sparse tensor DT,k;

Compute Dy, 741 < RMSNorm(eV,¢) - U7,

Apply softmax normalization on Dy, 71, along dimension 1;

Compute QK message Dy j, <

Sparsify Dy, 11 based on threshold to obtain sparse tensor Dk,TJrl;

Compute Dgph) T & non_contracted_tsr_prod(DTV;C, Dk7T+1)§

(h) .
Accumulate Dy 741 < Dy + DT&T 41

// weighting trigrams with bigrams
Compute Dy 71 < bigram(F, U, €);
Compute Dy y 741 < 32D7 3 741 + Dy
return D7y 741

Algorithm 4: Non-Contracted Tensor Product A; ;B;; = C; jx

Input: Two tensors A and B
Output: A 3D tensor C'
Function non_contracted_tsr_prod(A, B):
for each index v and k do
// if vectorized, an outer product Aj;® By
for each index j do
t Compute C; ; = A; j X Bjk;

L return C
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3.5 CaseStudies: Latent Structures for Interpreting Lan-

guage Models

In this section, we explore applications of the uncovered n-gram latent structures. We
present several case studies where we utilize the identified structures for understanding
and interpreting large language models. To showcase the generality of the structure-
revealing method, we conduct experiments with popular open-source large language
model families: Llama [[Touvron et all, 20234a,b, Roziere et al., 2024] and OLMo [ Groen-
eveld et al., 2024]. Our experiments run on servers with 1 TB of memory and 128 CPUs.
Unlike traditional mechanistic interpretability studies, our method does not rely on GPUs
or external datasets for collecting network activation patterns, making it more accessible

to resource-constrained communities.

3.5.1 Use Case 1: Analysing LLLM Inner Workings

Large language models are notorious for their lack of interpretability [Zhao et al/, 2024a].
The lack of interpretability is due to their inherent model complexity and size, made
worse by the usual opaque training process and unknown training data. Understanding
their inner workings, for example the roles of different components, can help calibrate
trust for users to use them appropriately. We showcase how the bigrams and trigrams
extracted along user-selected computational paths can help us discover and locate learned
associations akin to studies in mechanistic interpretability [Templeton et al/, 2024], but

without any additional training or inference on external datasets.

Paths of individual components. By examining the representative bigrams that are
captured by each MLP path, we find MLPs that might perform special linguistic func-
tions. For example, in OLMo-7B, the path which passes through the 3rd MLP promotes
the addition of the “-ing” suffixes to the current token. Similar MLPs with certain lin-
guistic functions are listed in Table . Note that the relationship between functions
and components are not necessarily one-to-one mappings. Particularly we find that the
paths through multiple MLPs might work together to complete one linguistic function
e.g. MLP 6 and MLP 18 in Llama-2-7B can add “-ing” suffix. One MLP might also do
multiple linguistic jobs e.g. MLP 1 in OLMo 7B adding “-1y” and “-~_else” suffixes.
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Table 3.1: MLPs in OLMo-7B and Llama-2-7B performing linguistic functions based on
jet bi-grams extracted from the corresponding jet paths. Logit values are computed after

intervention.
OLMo-7B Llama-2-7B
MLP Role A logit MLP Role A logit

1 -ly, -_else —4.19,-3.35 6 -ing —14.61
-ing —0.58 -es —3.95

9 -'t -9.73 18 -ing, -ity —9.69, —11.93

17 -_than —4.26 19 -ly -9.14

19 -s —7.42

This echos work on circuit discovery [Conmy et all, 2023, Ferrando and Voita, 2024]
and superposition [Elhage et al}, 2022], where the role of each component can not easily
be dissected and multiple components collaborate to fulfil a function. Table @ reports
arole identification study on attention heads in the first self-attention of OLMo-7B using
trigrams. Specifically, we find heads associated with maths and programming, e.g. head
1 on Maths/latex; heads promoting digits and dash composition into dates, e.g. head 25;
and heads constituting phrase templates, e.g. head 15 managing a “for x purposes”,
where z is a placeholder. To verify the roles we revealed, we further perform prelim-
inary intervention experiments where we ablate MLPs or attention heads and compute
variations in model logits. After the interventions, the logits drop consistently for all
cases, suggesting our n-grams indeed can help identify roles for selected components.
Varying impact on logit differences is likely due to overdetermination [Mueller, 2024]
and our partial selection of paths (e.g. for trigrams we only selected encoding-attention-

decoding paths, excluding any MLP).

3.5.2 Use Case 2: Analysing Pretraining Dynamics

Pretraining an LLM is usually highly resource-intensive. Therefore, it is crucial to mon-
itor the progress of a pretraining run to prevent wasting of time and compute. In this
section, we show how bigrams can serve as an effective signalling tool to trace the pre-
training dynamics, providing insights about the model’s maturity. Such signals are es-

pecially useful to understand what happens with the model when the pretraining loss
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Table 3.2: Several attention heads in the first residual block of OLMo-7B and their roles
identified with jet trigrams extracted from corresponding jet paths. We also include an
example trigram captured by each head.

Head Index Role Example 3-gram Alogit
2 Maths/latex (_Lemma, _let, _s) -0.1570
16 “for...purposes” (_for, _use, _purposes) -0.0019
26 Date composition (20, 23, _-) -0.0093
30 “into account...” (_into, _account, _possible) -0.0001

Table 3.3: Bi-gram evolution across pretraining steps for OLMo 7B. Each column rep-
resents a distinct step, while each row corresponds to a different rank. The table entries
are the bi-grams at each step for each rank. The number of tokens seen in association
with the pretraining steps is also annotated. The model gradually picks up meaningful
bi-grams after starting from random bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
0B [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least  &amp &amp &amp
1 ICUirling at least ’s at least its own its own
2 ords architect its own &amp its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal iums iums more than his own your own
6 Charge{ you're you're can't 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant 'my more than make sure can't iums

shows marginal improvements and fails to reflect the changes inside the model.
Identifying the top bigrams. To assess the model’s progression, we extracted bigrams
from OLMo-7B model checkpoints across 535K pretraining steps. Table @ presents a
summary of the top 10 bigrams at different stages of training. Due to space constraints,
we only show the top 10 bigrams every 100K steps. Initially, the network exhibits non-
sensical bigrams, such as “ICUirling”. As training advances, it gradually learns more
meaningful combinations, like “at least”. This process of acquiring sensible bigrams

stabilizes around step 200K, indicating that the model is reaching a level of maturity
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where the top 10 bigrams capture common meaning.

Analysing bigram learning speed. To evaluate the learning speed of these bigrams,
we consider the bigrams at the final training step (555K) as the ground-truth. We then
chart the hit ratios of these ground-truth bigrams at each pretraining step, as illustrated
in Figure @ Interestingly, even though the pretraining loss (the blue curve) shows
only minor improvements after the initial 50K steps, the model’s acquisition of effective
bigrams continues to progress in a steady, consistent manner. This observation aligns
with known phenomena in neural network training, such as double-descent and grokking,
which highlight the model’s ability to improve generalization capabilities even when the
loss appears to stagnate [Zhang et al), 2021, Power et all, 2022]. In addition, Figure @
characterizes the total pseudo-joint probability mass of top 1K bigrams from empirical
data [Liu et al., 2024b]. We derive a pseudo-joint bigram probability using statistical un-
igrams from [Liu et al}, 2024b]. We observe that the model gradually accumulates prob-
ability mass that aligns with the real corpus data distribution. Interestingly, although
the overall trend is upward, the mass initially rises sharply from zero, then undergoes
two noticeable dips before continuing to increase. This non-monotonic behaviour likely
reflects distinct stages in the model’s learning dynamics. Early in training, the model
quickly captures high-frequency bigrams, resulting in the initial surge. As training pro-
gresses, it explores a broader range of token combinations, including less frequent or
less relevant bigrams, temporarily redistributing probability mass away from the top 1K
bigrams and causing the first dip. The second dip may result from further rebalancing,
overfitting to mid-frequency patterns, or transient noise in gradient updates. Contribut-
ing factors may include optimization dynamics and noise in the training data, which we
leave for future investigation. Eventually, the model reallocates probability mass more
accurately and converges toward the empirical distribution, resuming its upward trajec-

tory.

Learning schemes for different bigrams. To understand if there are any differences
between the learning schemes of different bigrams, we can trace the progression of the
bigram scores for selected bigrams. Figure @ provides a visual comparison of how
different bigrams are promoted or suppressed during the pretraining process. We analyse

bigrams that exhibit different mapping relationships between the first and second tokens,
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Figure 3.5: Top 1K bigram hit ratios w.r.t. the final step.

inspired by the one-to-one, one-to-many, and many-to-many relational analysis in the
knowledge graph literature [Lacroix et al., 2018]. For example, “at least” is a few-to-
many bigram: there are many possible tokens that can follow “at”, but relatively few that
commonly precede “least”. The different slopes and levels of the lines indicate varying
rates of learning for the respective bigrams. We observe that, the model first acquires
random bigrams due to random parameter initialisation. These random bigrams, like
“ICUirling” and “VENT thanks”, are quickly suppressed in the early steps and never
regain high scores. In contrast, few-to-many bigrams like “at least” are first promoted
to very high scores but then get suppressed perhaps due to the model seeing more of the
scope of the token “at”. One-to-one bigrams like “&amp” (HTML code) are gradually
promoted and stabilize. Many-to-many bigrams like “make sure” takes the most time
to learn, and the scores are still increasing even at the end of pretraining. Our findings
suggest that the training process effectively promotes certain “good” bigrams, but at
different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as
targeted training on more relevant bigrams or adjusting the training data to improve the

pretraining speed.

63



10-
—— Pretraining Loss —— Total Mass ’/‘0-022
9_
L 0.020
w 8-
9 0.018
o /] ©
g L0.0165
c 6- =
'© L 0.014 8
5 5 o
0 -
> 0.012
o,
L 0.010
3_
" L 0.008
2_
0 100000 200000 300000 400000 500000

Pretraining Steps
Figure 3.6: Top 1K bigram mass w.r.t. empirical data.

Figure 3.7: Analysis of OLMo-7B’s pretraining dynamics by measuring its bigram pro-
gression.

3.5.3 Use Case 3: Analysing Finetuning Effects

Finetuning is an important phase where the raw pretrained LLMs are guided to perform
particular tasks. We would like to understand how the model inner knowledge changes
during finetuning processes. While “parameter diff”” can be a straightforward solution, n-
grams provides an alternative approach, where the diffs are human-readable and directly
reflect the change of knowledge retained by the LLMs, similar to how a diff command
would work in Linux platforms. Such insights would allow us to better decide the mixture
of data for finetuning, and the number of steps for finetuning, which are currently a mix

of heuristics and trial-and-error.

Code finetuning promotes coding-relevant bigrams. We analyse the changes due to
code finetuning via diffing bigrams extracted from Llama-2-7B and its finetuned ver-
sions, Codellama-7B and Codellama-Python-7B. As highlighted in Table @ with or-
ange coloring, the bigram comparison reveals coding-relevant keywords, such as “x*xkwargs”,

“getters” and “Assertion”, suggesting bigrams can be a tool for verifying if finetun-
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Figure 3.8: Visualization of OLMo-7B’s promotion and suppression dynamics of bi-
grams scores.

ing is effective in acquiring relevant knowledge.

Does RLHF finetuning remove toxicity? We compare the raw pretrained model, Llama-
2-7B, with its RLHF version, Llama-2-7B-Chat. RLHF alignment [Bai et al., 2022] is
widely believed to detoxify LLLMs, as indicated by 7oxiGen scores [Hartvigsen et all,
2022]. However, it remains easy to prompt LLMs to bypass this alignment and produce
toxic content [[Y1 et al), 2024]. In Table , we demonstrate this with dataset-based
toxicity scores on a subset of challenging prompts in the RealToxicityPrompts (RTP)
dataset [Gehman et al/, 2020]: the gap in toxicity potential between the two models nar-
rows as we prepend to RTP prompts increasingly “explicit” (short) context. Specifically,
for hard context, Llama-2-7B-Chat shows a 84% probability of producing toxic content,
close to that of Llama-2-7B. This suggests that the RLHF model is not completely detox-
ified but rather hides the toxicity knowledge from the “surface”, which however can be
easily triggered by specific contexts. To quantify the toxicity knowledge embedded in
these models, we use bigram probability scores and calculate the cumulative conditional
probability mass for a set of “toxic” bigrams, which are combinations of tokens associ-
ated with toxic meanings from a predefined list of keywords. Interestingly, we observe
a small change in mass from 0.03445 to 0.03377 after RLHF. Thus, although ToxiGen
score may suggest that the model has been effectively detoxified, the bigram mass reflects
retention of toxic knowledge after RLHF, aligning with the scores obtained by introduc-

ing medium or hard explicit context and computing a toxicity score (via a second scorer
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Table 3.4: The bi-grams before and after code fine-tuning. For space constraints, we only
show the bi-grams at every 50 ranks among the top 1,000 bi-grams. We highlight the bi-
grams that are relevant to coding, such as “**kwargs” a keyword in Python programming.
This demonstrates that our method has the capability to extract representative bi-grams
that reflect fine-tuning quality.

Rank LLAMA2-7B CodeLLAMA-7B CodeLLAMA-Python-7B
0 (_more, _than) (_like, wise) (_like, wise)

50 (_Now, here) (_just, ification) (_Like, wise)

100 (_system, atically) (_in, _case) (_all, udes)

150 (_all, erg) (_no, isy)

200 (_on, ioms) (ktéber, s)

300 (_other, world) (_all, ud)

350 (_Just, ified) (gebiet, s)

400 (_trust, ees) (_Protest, s) (_can, nab)

450 (_at, he) (_transport, ation)
500 (_book, mark) (Class, room)

550 (_from, ) (_access, ory) (_personal, ized)
600 (_WHEN, ever) (_In, variant) (_excess, ive)

650 (_where, about) (_I, _am) (_Add, itional)

700 (ag, ged) (add, itionally)

750 (_he, he) (name, plates)

800 (_all, anto) (_select, ive)

850 (_Tom, orrow)

900 (_for, ays) (_Program, me) (blog, ger)

950 (_Bach, elor) (_can, cellation)

model, [Hanu and Unitary team|, 2020]) on RealToxicityPrompts dataset [Gehman et alJ,
2020]. This showcases a potential application of bigrams in constructing data-free in-
dices that reveal embedded knowledge, offering complimentary views beyond traditional

data-driven benchmark evaluations.

3.6 Discussion

Limitations. Isolating partial computations out of the original transformer computa-
tion graph can be seen as a truncated Taylor approximation problem, where the center
is the portion we want to single out and the variate is the rest of the computation [Chen

et al., 2024]. This chapter does not dive into the details of such approximation but rather
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Table 3.5: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different meth-
ods: ToxiGen, jet bi-grams, and RealToxicityPrompts challenge prompting. Higher num-
bers indicate higher toxicity scores on the corresponding benchmarks and higher toxic
knowledge possession for jet bi-grams.

Metric Llama-2-7B Llama-2-7B-chat
Standard Benchmarking
ToxiGen Score [Hartvigsen et all, 2022] 21.25 0.00

Prompt-based Benchmarking with RTP Challenging Prompting [Gehman et al), 2020]

No Prompt 38% 23%
Very Mild 49% 35%
Medium 64% 64%
Hard 88% 84%

Data-free Benchmarking
Jet Bi-gram Mass 0.03445 0.03377

choose to present the parallel with factorization models, where latent structures can be
surfaced similarly as in knowledge base completion, echoing Chapter E Besides, the
structures we consider are fragments of natural languages, rather than factually mean-
ingful entities or relations. There are substantial evidences that LLMs encode real-world
factual structures, for example [Petroni et al), 2019] and [Yang et al., 2024], use curated
benchmarks to show pretrained language exhibit certain factual reasoning capability.
We would explore similar factual structures in our approach in the future. Additionally,
the n in the n-gram structures is bounded by the number of self-attention layers to un-
fold. For example, when no self-attention is used, we observe n = 2; adding a single
self-attention layer increases this to n = 3. We speculate that there exists a systematic
relationship between n and the number of self-attention layers, potentially exponential
in nature. Finally, we plan to verify the relationship between the found structures and

the pretraining data distribution, which requires large computing resources.

Summary. Large language models are sometimes seen as the victory symbol for the
unstructured learning paradigm, where structure curation seems no longer necessary for

building a powerful artificial intelligence agent — scaling model sizes on larger unstruc-
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tured textual corpora is the way. This chapter, however, shows that structures are still
the critical ingredients even in the large language models and exposing them is help-
ful for profiling the knowledge within each model checkpoint. Overall, this chapter
provides initial evidence that language modelling objectives, though focused on local
context and trained on unstructured data, can recognize and encode structural patterns
into the transformer model weights. The key in exposing these inherent structures is
to observe that transformers, the typical architecture for large language models, contain
portions of computations that resemble factorization based models (FMs). Once trained
with LM objectives, these portions of computations capture latent structures in the train-
ing data. To expose these structures, this chapter dissects these FMs from the monolithic
computation graph of the transformer and derive their corresponding bigrams and tri-
grams. Akin to how structures help recover the knowledge graph in knowledge base
completion, this chapter demonstrates that the uncovered n-gram structures in LLMs
help reconstruct the linguistic functions acquired via the models, offering an alternative
angle to interpret LLMs in a data-free way. Our case studies demonstrate the potential of
using extracted n-gram patterns to debug pretraining progress, verify fine-tuning effects,
and detect model toxicity. Looking ahead, LLMs could expose two complementary in-
terfaces: a neural interface for training and prediction, and an n-gram-based symbolic

interface for inspection, analysis, and control.

Implications. This chapter demonstrates that the same computation, if examined under
a new perspective, can lead to new insights that are invisible in the original lens. Using
transformers as an example, one view (let us call it the neuron view) is to see it as a
special organization of neurons into stacked self-attention and FFNs plus embeddings
on both ends; this view allows easy implementations for training on GPUs. Another
view (let us call it the behavior view), which is more helpful to interpretability, is to
see it as an ensemble of n-gram models describing token transition behavior. Although
the neuron view is useful when building the model and training it, it might not be the
best level of abstraction for understanding and interpreting model behavior due to the
issue of polysemy [Elhage et al, 2022]. We believe that to understand the model better,
channelling both the neuron and behaviour view is necessary. Our method provides
an initial attempt to do this by reorganizing the neural computations into FMs, which

brings structures in behaviours. This new lens enable new findings such that LLMs do

68



not “digest” data points equally — some structures are acquired fast, but the others are
always in learning or first learned and then suppressed. These new findings are relevant

in the ongoing discourse on Al transparency and trustworthiness.
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Summary of Structure

Structures are necessary components for us human beings to grasp physical and artificial
worldsf with limited representational capacityﬂ. The opposite would be instead keeping
all, potentially infinite, manifested instances in our memory without any abstraction.
With structures, we can effectively perceive reality as a collection of elements and their
assembling with relations or hierarchy. By this cognitive process, our minds allow us to
know the world and make sense of what is happening in it, ideally leading to consistent
and rational behaviour.

Similarly, when building knowledge engines for intelligent agents, structure forma-
tion emerges as a key factor. While the structured paradigm explicates structures through
data and trains models to capture them, the unstructured paradigm seems to directly rely
on specific computational graphs (e.g. deep transformers) and massive pretraining cor-
pora without any predefined schematic structures. This sharp difference in the treatment
of structures has led to the tension between the two paradigms, with the current fashion
in favour of the unstructured paradigm. Scaling language models on larger datasets tends
to be the preferred answer to artificial intelligence while knowledge graphs being left out
in the cold.

In this part, however, we reveal a deep connection between the two paradigms. Specif-
ically, we have demonstrated that training models with language modelling objectives
picks up structural patterns in embedding-encapsulated models, regardless of whether
we are working within a structured or unstructured paradigm. In other words, structures
naturally arise when the learning objective attempts to model the surrounding environ-

ment through a self-supervised, language modelling approach, as illustrated in Figure

®E.g. a fictional universe or societal traditions.
"The brain operation is bounded by its energy supply from the body and can be sensitive to working
environments e.g. the psychological contexts.
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Figure 3.9: Language modelling objective over embedding-encapsulated models drives
the acquisition of structures for both structured and unstructured learning paradigms.

When we consider such a structure formation process induced by training with language-
modeling objectives, the surficial tension between structured and unstructured paradigms
— as exemplified separately with knowledge graphs and large language models — thus
shrinks: they both rely on structures, be they in data or in the models, and language
modeling helps both form meaningful structures in the models; it is just that one encodes
structures deeper in the models via training with sometimes arbitrary or even “magic”
corpora choice, while the other uses structures more straightforward. These formingE
and formed structures are fundamental to both paradigms, and crucial for downstream
tasks such as text or graph completion and for broader representation learning.

To conclude this part of the thesis, we would like to prompt the readers’ brain with
a question on structures in artificial intelligence and perhaps for our own brains: Are
structures always helpful for the artificial intelligence agent’s performance? And to what

extent do these embedded structures advance or constrain model generalization across

8 At this moment, someone may be training a large language model, which is forming some structures
about our physical world or about some artificial reality.
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scenarios? These structures definitely offer efficiency in knowledge representation and
retrieval, but at the cost of demanding queries of more formal terms, usually needing
to align with the language used to form the structures Can they be that flexible when

dealing with informal knowledge in unseen formats or new knowledge?
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Part II Destructure.
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In the wild, reality is closer to the fresh eyes, where things are observed

as they are.

Structures are the cornerstones for building knowledge engines. Both structured and
unstructured paradigms inherently induce global structures into model computations
through language modelling objectives as shown in Part ﬂ These global structures may
manifest in different forms, such as relationships between drugs or common syntax pat-
terns. For instance, in the structured paradigm, drug-drug interactions can be encoded
using tensor factorization models (Chapter E). And in the unstructured paradigm, lin-
guistic patterns like suffixes may be captured in the embedding-FFN-unembedding com-
putational path in the transformer models (Chapter H).

However, not all structures contribute positively to intelligent behaviours (Figure ).
For a given task, useful structures tend to be specific and concrete. Therefore, an excess
of irrelevant structures may reduce efficiency, as identifying and retrieving the useful
ones becomes computationally costly. Existing useful structures may become outdated
or mismatched with our evolving world. For example, factual knowledge [Petroni et all,
2019, Roberts et all, 2020], such as “who is the current US president,” may change af-
ter every election. Corresponding structures once embedded in neural weights will stay
static unless updated through human intervention. Additionally, new terminologies, like
“social distancing,” did not exist before the COVID-19 pandemic, and models trained
prior to such events may struggle to understand them in the new situations. Moreover,
problematic structures can be induced unintentionally due to noise in the training data.
For example, gender-biased content in the internet corpora can be captured in the trans-
former model weights if not filtered from the training data [Bender et all, 2021].

Model editing [Meng et al., 2022, [lharco et al., 2023], model unlearning [Yao et al,
2024, Liu et al., 2025], retrieval-augmented generation (RAG) [Lewis et al., 2020b], and
reinforcement learning from human feedbacks (RLHF) [Christiano et al., 2017, Ouyang
et al), 2022] have emerged as remedies to patch these unwanted structures. However,
they have certain limitations. The behaviour changes might be local (limited to cho-
sen datasets) and temporary (the biased structures still live in model weights), making
them prone to adversarial attacks [Xue et al,, 2024] and requiring substantial centralised

human steering [Wang et al., 2023].
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Figure 3.10: Not all structures encoded in the model are of positive roles. Some can be
irrelevant, unintentionally inappropriate, intentionally inappropriate, and outdated.

This thesis instead explores an alternative approach, where we want to improve the
model’s ability to rewire itself rather than relying on external patches. If a model can
transition from outdated structures to new ones in a sample-efficient manner, rewiring
it with desired behaviours becomes significantly easier when unwanted structures are
identified. The core idea is pretty simple: a model can learn to rewire its internal struc-
ture by frequently exposing itself to controlled structural dismantling during training.
Hence, Part @ shifts the focus from structuring, the topic of Part m, to its opposite force —
destructuring,E and seeks to examine its impact on both the structured and unstructured

paradigms for building knowledge engines.

Lessons from natural intelligence

At first glance, the concept of destructuring in artificial intelligence may appear counter-
intuitive. Why would one discard the outcomes of prior learning experiences, especially
when these outcomes were achieved through substantial investment, such as prolonged
training hours and massive datasets?

To answer this question, we can draw a parallel to natural intelligence, particularly
how the brain memory. Memory consists of four primary operations: acquisition, con-
solidation, forgetting, and retrieval [Berry et al|, 2024]. Acquisition and consolidation

work together to form stable structures in the memory. Retrieval, in turn, use these

?Definition of “destructure” as a verb can be found in wiktionary, meaning dismantling with etymology
from de- + structure. For human cognition, destructuring can be conceived as the act to acknowledge the
epistemic uncertainty, admit the state of unknowing about the ever-changing present, and reassess the
reality with an open perspective.
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structures in combined with contextual clues to surface relevant knowledge.

However, the structures in human brains are not fixed, but remain flexible even into
old age. Neural circuits, the brain’s primary structures, can be rewired by both in-
ternal and external experiences, allowing adaptation to new environments [Park and
Huang, 2010], acquiring new skills [Green and Bavelier, 2008], recovery from psy-
chological trauma [Kays et al), 2012], and even compensating for past physical brain
damages [Kleim and Jones, 2008]. These phenomenons have been known under the
umbrella term of neuroplasticity in neuroscience and other relevant subjects [Fuchs and
Fliigge, 2014, Costandi, 2016]. While the exact mechanisms behind neuroplasticity re-
main unclear, recent work suggest that mechanisms at molecular [Bennett et all, 1964],
cellular [Rosenzweig, 1996] and network levels [Leuner and Gould, 201Q], contribute
to the brain’s functional flexibility. Active forgetting, in particular, has been found to
be a key ingredient to neuroplasticity [[Anderson and Hulbert, 2021, Berry et al., 2024],
which enables memory adaptation to suit particular cognitive and emotional objectives.

When mirroring natural intelligence to artificial intelligence, we find that the oper-
ations of acquisition, consolidation, and retrieval are well understood and modeled in
both the structured and unstructured Al paradigms. For instance, acquisition and con-
solidation are achieved through gradient-based optimization guided by self-supervised
objectives and subsequent finetuning [Devlin et al., 2019, Radford et al., 2019, Brown
et al., 2020], while retrieval relies on training dense passage classifiers [Karpukhin et al.,
2020, Lewis et al,, 2020b, Reichman and Heck, 2024]. In contrast, forgetting, especially
its positive role, has been receiving less attention in Al systems, despite its potential to

mimic the neuro-plastic processes that allow for continuous adaptation and learning.

Inductive inference and generalization to the unseen

Philosophically, “majority” learning fails to encompass the full spectrum of intelligence.
Intelligence is not solely about excelling in frequent or common patterns, often aris-
ing from habitualisation, but equally about thriving in long-tailed, atypical behaviours.
Throughout human history, individuals those residing the long tail of thoughts, have
sometimes been closer to the truth. For instance, Copernicus’s heliocentric model, which
proposed that Earth orbits the Sun rather than the opposite, defied the dominant belief

structures of his time but proved to be a closer representation of reality. Such break-
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Figure 3.11: Memory consists of four main operations: acquisition, consolidation, re-
trieval, and forgetting.

throughs highlight how intelligence can franscend the constraints of prior knowledge
structures and venture into the unknown.

From a computational perspective, while modern Al systems achieve superhuman
performance on frequently encountered training data, they experience significant degra-
dation when handling long-tailed or unseen data [Buda et al., 2018], regardless of whether
they operate in structured or unstructured paradigm. Substantial studies [Finn et al,
2017, Arjovsky et al., 2019, Scholkopf et al., 2021]] have been conducted to investi-
gate this issue. The performance gap is often attributed to: (i) the model’s tendency to
pick up nuances or perform shortcut learning [Geirhos et alJ, 2020], preventing it from
capturing more abstract and generalizable patterns during training; and (ii) at test-time,
an over-reliance on computational structures learned from past examples coupled with
limited capacity to dynamically incorporate immediate contextual information from the
input [Geirhos et alJ, 2020].

An ideal artificial intelligence system capable of transcending experience diverges
fundamentally from deduction systems, which applies established general rules to spe-
cific cases (e.g., querying a classic ontological knowledge base [Horrocks et al., 2003,
Horrocks, 2005, World Wide Web Consortium (W3C), 2024] in the structured paradigm).
Instead, it aligns more closely with inductive inference, a form of reasoning that extrap-
olates beyond immediate evidence. While the rationality of inductive inference remains

to be philosophically justified [Hume, 1999], its amplicative nature allows bringing in
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new information into old systems, thereby reshaping an established knowledge land-
scape. In the unstructured paradigm, large language models exhibits some form of in-
ductive inference through in-context learning, where they solve a task with given new
inputs using the prompt composed of a task description and a few example input-output
pairs [Brown et al., 2020]. However, this extrapolation is difficult to control, verify, and
validate its outcome [Lee et all, 2025], rendering it susceptible to adversarial attacks,
prompt choices, and hallucination.1d Consequently, while promising, current large lan-
guage models fail to perform systematic inductive inference in a robust and scalable
way [Thomm et al), 2024, Wang et all, 2024]. We refer to this shortcoming as a lack of
model plasticity, which we equate with inadequate inductive inference capacity through-
out this thesis. This challenge is particularly acute in larger models, such as foundation
models, due to combined factors including their immense model sizes, vast datasets, and

high cost of training.

In Part @ we explore whether and how destructuring can improve model plasticity
and help build universal knowledge engines that are capable of powering Al in diverse
environments. Given the embedding-centric nature of mainstream architectures, where
embeddings (and unembeddings) are crucial to encode global structures (Part m), we hy-
pothesize that analysing the embedding learning process can provide deeper insights
into structure formation. A core finding of this study is the reinterpretation of embed-
ding learning as a sequence of message-passing operations (Chapter @). In essence,
embeddings function as caches for the outcomes of traversals over structures. However,
these cached structures can become overly fixed, limiting generalization. Consequently,
the simplest approach to destructure the model, is to clean overly fixed structures in
the embeddings regularly, allowing other model components to learn more abstract and
generalizable patterns. This new perspective motivates our proposed approach active
forgetting, a learning mechanism that periodically resets embeddings. By acting as a
targeted intervention in standard training, active forgetting improves model plasticity
and facilitates inductive inference.

Concretely, we explore active forgetting and its impact in both the structured paradigm

19The lack of controllability stems from limited understanding of why in-context learning emerges in
transformer-based language models. We speculate that it may be linked to deeper structural formation
facilitated by self-attention mechanisms, where the toolkit discussed in Chapter chould aid in uncovering
these processes in the future.
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and unstructured paradigm for constructing knowledge engines:

1. Chapter H: In the structured paradigm, we study factorization models, a leading
approach in knowledge base completion. While FMs demonstrate strong perfor-
mance in transductive settings, they fail in inductive scenarios. Our theory into
structure formation reveals that entity embeddings in FMs cache infinite rounds
of message-passing over the knowledge graph. This insight explains FMs’ failure
in inductive scenarios, as their reliance on rigid structures (ingrained in the em-
beddings) overfits to the original graph and impedes generalization to new graphs.
To address this, we propose incorporating active forgetting into FMs, periodically
flushing old values and reloading new ones in embeddings to mitigate the effects
of overly rigid structures. This derives a new model that bridges FMs and the
message-passing graph neural networks — REFAcTor GNNs. Experiments show

that REFacTtor GNNs improves generalization to novel graphs with unseen nodes.

2. Chapter E: In the unstructured paradigm, we study pretrained language models,
the mainstream approach for building universal knowledge engines from purely
unstructured data. Pretrained language models often lack plasticity and require
large datasets to relearn embeddings for extending to new languages. However,
data is scarce for low-resource languages. To address this, we examine cross-
lingual transfer in a low-data regime, aiming to pretrain language models that
quickly adapt to reasoning tasks for new languages with limited data. Each lan-
guage represents a distinct environment, requiring inductive generalization. Ac-
tive forgetting again proves effective and practical to incorporate into large scale
pretraining processes. Models pretrained with this technique exhibit significantly

better adaptation to previously unseen languages with limited data.

Both the structured and unstructured paradigms rely on structure formation to learn
representations. By rethinking the procedures underlying structure formation, this part
suggests that AI’s struggles with generalization stem from overly fixed internal struc-
tures. To address this, Part @ proposes that destructuring can serve as a way to coun-
terbalance the rigidity introduced by these overly-fixed structures embedded in model
computations. Given the widespread use of embedding layers in structured and unstruc-
tured paradigms, active forgetting emerges as a simple yet powerful mechanism for im-

plementing destructuring, where destructuring becomes as easy as resetting embedding
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values periodically. This approach proves effective across both the structured and un-
structured paradigms, providing a unified framework to improve model plasticity and
enable models to perform well in dynamic environments. Our results demonstrate that
universal knowledge engines, which must achieve the plasticity and adaptability neces-
sary for robust performance in diverse, real-world settings, will benefit significantly from

incorporating active forgetting or similar destructuring techniques.
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Chapter 4

Inductive Knowledge Graph Learning

with Active Forgetting

A version of this work was previously presented at a peer-reviewed conference. Please refer to
[Chen et al., 2022] for full citation.

Knowledge graphs form the backbone of modern knowledge engines, enabling Al sys-
tems to organize, retrieve, and reason over structured information. Among the tools that
enrich and sustain these knowledge graphs, Factorization Models (FMs), such as Dist-
Mult, have emerged as a cornerstone in Knowledge Graph Completion (KGC), a task
focused on predicting missing relationships between entities. In transductive scenarios,
Factorization Models (FMs) often surpass Graph Neural Networks (GNNs), emerging as
indispensable pillars of knowledge graphs, completing them and elevating their utility
as a foundational source of knowledge for downstream tasks.

However, FMs struggle in inductive scenarios, where they can not generalize to un-
seen nodes or incorporate node features effectively. To transfer FM’s transductive per-
formance to inductive scenarios, we observe that FMs’ structure formation rely highly
on the embeddings. These embeddings, when optimized through gradient descent, can
be reinterpreted as a sequence of message-passing rounds across the knowledge graph.
In other words, embeddings essentially act as a historical cache of node states, tracing
structural traversals over the knowledge graph.

This perspective reveals a fundamental limitation about FMs: when trained to con-

vergence, FMs tend to capture excessive global graph structures through infinite rounds
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of implicit message-passing, often far exceeding the graph’s natural radius (L — ©0).
While extensive structuring yields strong transductive performance, it also results in
overly constrained representations that hinder generalization from training graphs to new,
unseen graphs. To destructure rigid representations, we propose a simple yet powerful
mechanism: active forgetting. By periodically clearing and reloading new node em-
beddings, this operator truncates the infinite rounds of message-passing, resetting the
model’s memory of past computations over the nodes. This reset forces the model to
focus on the local neighbourhood information, which enables inductive reasoning for
previously unseen or forgotten nodes. Mathematically, this approach synthesizes the
strengths of FMs and GNNss into a unified framework, which we call REFAcTtor GNNSs.

Evaluations across standard KGC benchmarks demonstrate that REFactor GNNs
maintain the transductive performance of FMs while achieving state-of-the-art induc-
tive performance with significantly fewer parameters. REFActor GNNs bridge the gap
between FMs and GNNs, providing a unified architecture for robust knowledge graph

representation learning, supporting Al agents’ dynamic knowledge needs in the wild.

Factorisation-based Models Graph Neural Networks
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Message Q
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Figure 4.1: ReEFactor GNN bridges factorization-based models and graph neural net-
works by reformulating gradient descents over entity embeddings as message-passing
rounds.
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4.1 Factorization Meets Message-Passing

In recent years, machine learning on graphs has attracted significant attention due to
the abundance of graph-structured data and developments in graph learning algorithms.
Graph Neural Networks (GNNs) have demonstrated state-of-the-art performance for many
graph-related problems, such as node classification [Kipf and Welling, 2016] and graph
classification [Gilmer et al|, 2017]. Their main advantage is that they can easily be ap-
plied in an inductive setting: generalising to new nodes and graphs without re-training.
However, despite many attempts at applying GNNs for multi-relational link prediction
tasks such as Knowledge Graph Completion [Nickel et al., 2016c], there are still few
positive results compared to more traditional factorisation-based models (FMs) [[Yang
et al), 2015b, Trouillon et al., 2016]. As it stands, GNNs, after resolving reproducibility
concerns, either deliver significantly lower performance [Nathani et al., 2019, Sun et alJ,
2020a] or yield negligible performance gains at the cost of highly sophisticated architec-
ture designs [Xu et al,, 2020b]. A notable exception is NBFNet [Zhu et alJ, 2021], but
even here improvements come at the price of high computational inference costs com-
pared to FMs. Furthermore, it is unclear how NBFNet could incorporate node features,
which, as we will see in this work, leads to remarkably lower performance in an inductive
setting. On the other hand FMs, despite being a simpler architecture, have been found to
be very accurate for knowledge graph completion when coupled with appropriate train-
ing strategies [Ruffinelli et al}, 2020] and training objectives [Lacroix et al}, 2018, Chen
et al), 2021]]. However, they also come with shortcomings in that they, unlike GNNs,
can not be applied in an inductive setting.
Given the respective strengths and weaknesses of FMs and GNNs, we wonder whether

we can bridge these two seemingly different model categories so that we can develop
knowledge graph completion models that generalize to unseen graphs. While exploring

this question, we make the following contributions:

* By reformulating gradient descent on node embeddings using message-passing prim-
itives, we show a practical connection between FMs and GNNs, in that: FMs can
be treated as a special instance of GNNs, but with infinite neighbourhood, layer-wise

training and a global normaliser.

I'The traditional view is that the transductive nature of FMs stem from their need to retrain on new
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* Based on this connection, we propose a new family of architectures, referred to as
ReFactor GNNs, which interpolates between FMs and GNNs. In essence, REFac-
TorR GNNs inductivise FMs by using a finite number of message-passing layers, and

incorporating node features.

* Through an empirical investigation across 15 well-established inductive and trans-
ductive benchmarks, we find that REFActor GNNs achieve state-of-the-art inductive
performance and comparable transductive performance to FMs, despite using an order

of magnitude fewer parameters than GNNss.

4.2 Literature Review: Multi-relational Graph Learn-
ing, FMs, and GNNs

Multi-Relational Graph Representation Learning Multi-relational graph represen-
tation learning concerns graphs with various edge types. Another relevant line of work
would be representation learning over heterogeneous graphs, where node types are also
considered. Previous work on multi-relational graph representation learning focused ei-
ther on FMs [Nickel et al}, 2011b, Trouillon et al., 2016, [Yang et al., 2015b, Lacroix et al.,
2018, Nickel et al., 2016¢, Dettmers et all, 2018, Nguyen et all, 2018, Chen et al., 2021]]
or GNN-based models [Schlichtkrull et al), 2018, Xu et all, 2020a, Zhang et al., 2020,
Li et al}, 2021b]. Similar to a recent finding in a benchmark study over heterogeneous
GNNs [Lv et all, 2021]], where the best choices of GNNs for heterogeneous graphs seem
to regress to simple homogeneous GNN baselines, the progress of multi-relational graph
representation learning also mingles with FMs, the classic multi-relational link predic-
tors. Recently, FMs were found to be significantly more accurate than GNNs for KGC
tasks, when coupled with specific training strategies [Ruffinelli et al., 2020, Jain et all,
2020b, Lacroix et al, 2018]. While more advanced GNNs [Zhu et al/, 2021] for KBC
are showing promise at the cost of extra algorithmic complexity, little effort has been
devoted to establishing links between plain GNNs and FMs, which are strong multi-
relational link predictors despite their simplicity. Our work aims to align GNNs with

FMs so that we can combine the strengths from both families of models.

nodes, a view which we further underpin by also observing that FMs are not inductive due to the need for
infinite layers of on-the-fly message-passing.
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Relationships between FMs and GNNs A very recent work [Srinivasan and Ribeiro,
2020] builds a theoretical link between structural GNNs and node (positional) embed-
dings. However, on one end of the link, the second model category encompasses not
merely factorisation-based models but also many practical graph neural networks, be-
tween which the connection is unknown. Our work instead offers a more practical link
between positional node embeddings produced by FMs and positional node embeddings
produced by GNNs, while at the same time focusing on KGC. Beyond FMs in KGC,
using graph signal processing theory, Shen et al, [2021]] show that matrix factorisation
(MF) based recommender models correspond to ideal low-pass graph convolutional fil-
ters. They also find infinite neighbourhood coverage in MF although using a different

approach and focusing on a different domain in contrast to our work.

Message-passing Message-passing is itself a broad terminology, it is generally dis-
cussed under two different contexts. Firstly, as a computational technique, message pass-
ing allows recursively decomposing a global function into simple local, parallelisable
computations [MacKay|, 2003], thus being widely used for solving inference problems
in a graphical model. Specifically, we note that message passing-based inference tech-
niques were proposed for matrix completion-based recommendation [Kim et al., 2010]
and Bayesian Boolean data decomposition [Ravanbakhsh et al/, 2016] in the pre-deep-
learning era. Secondly, as a paradigm of parameterising learnable functions over graph-
structured data, message-passing has recently been used to provide a unified reformu-
lation [Gilmer et all, 2017] for various GNN architectures, including Graph Attention
Networks [Velickovi€ et all, 2018], Gated Graph Neural Networks [Li et al/, 2016], and
Graph Convolutional Networks [Kipf and Welling, 2016]. In this work, we show that
FMs can also be cast as a special type of message-passing GNNs by considering the
gradient descent updates [Bottou, 2012] over node embeddings as message-passing op-
erations between nodes. To the best of our knowledge, our work is the first to provide
such connections between FMs and message-passing GNNs. We show that FMs can be
seen as instances of GNNs, with a characteristic feature about the nodes being consid-
ered during the message-passing process: our REFactor GNNs can be seen as using
an Augmented Message-Passing process on a dynamically re-wired graph [[Velickovid,
2022].
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4.3 Formalizing FMs and GNNs for KGC

Knowledge Graph Completion (KGC) [Nickel et al), 2016b], also known as knowledge
base completion (KBC), is a canonical task of multi-relational link prediction. The
goal is to predict missing edges given existing edges. Formally, a knowledge graph
contains a set of entities (nodes), £ = {1,...,|€|}, a set of relations (edge types)
R ={1,...,|R|}, and a set of typed edges between the entities 7 = {(v;, r;, wz)}g,
where each triplet (v;, r;, w;) indicates a relationship of type r; € R between the subject
v; € &€ and the object w; € £. Given a node v, we denote its outgoing 1-hop neighbour-
hood as the set of relation-object pairs N} [v] = {(r,0) | (v,r,0) € T}, its incoming
1-hop neighbourhood as the set of subject-relation pairs N [v] = {(r,s) | (s,r,v) € T},
and its total neighbourhood as the union of the two N''[v] = N[v] UNL[v]. We de-
note the neighbourhood of v under a specific relation r as N1 [r, v]. Entities may come
with features X € RI€*K for describing them, such as textual encodings of their names
and/or descriptions. Given a (training) knowledge graph, KGC is evaluated by answer-
ing (v, r,7)-style queries i.e. predicting the object given the subject and relation in the
triplet. And queries like (7,7, v") are answered using inverse queries (v, 7%, ?) in this
work, following [Lacroix et al., 2018].

Following the 1vsAll setting used in Chapter 2 and Ruffinelli et al| [2020], multi-
relational link prediction models can be trained via maximum likelihood, by fitting a
parameterized conditional categorical distribution Py(w | v,7) over the candidate ob-

jects of a relation, given the subject v and the relation type 7:

exp Lg(v,r,w)

P —
o) = e Tolvir 0)

= Softmax(T's(v, 1, ))[w]. 4.1)

Here I'y : £ x R x £ — R s a scoring function, which, given a triplet (v, r, w), returns
the likelihood that the corresponding edge appears in the knowledge graph.

We illustrate our derivations using DistMult [[Yang et al., 2015b] as the score function
I" and defer extensions to general score functions, e.g. ComplEx [[Trouillon et alJ, 2016],
to the appendix. For DistMult, the score function I'y is defined as the trilinear dot product

of the vector representations corresponding to the subject, relation, and object of the
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triplet:
Lo(v, r,w) = (f4(v), fo(w), 9u(r)) = Z fo()ifs(w)igs(r)i, (4.2)

where f, : & — R¥ and g, : R — R¥ are learnable maps parameterised by ¢ and 1
that encode entities and relation types into A -dimensional vector representations, and
0 = (¢,7). We will refer to f and g as the entity and relation encoders, respectively. If
we define the data distribution as Pp(z) = |—,1f| > (wrw)eT Owraw) (T), Where 0y ) () is
a Dirac delta function at (v, r, w), then the objective is to learn the model parameters 6
by minimising the expected negative log-likelihood £(€) of the ground-truth entities for

the queries (v, r, ?) obtained from 7
arg mein L(0) where L(0) =—E,_p,[log(Py(w|v,r)]

:_F Z log Py(wlv,r).

| (v,r,w)ET

4.3)

During inference, we use P, for determining the plausibility of links not present in the
training graph.

4.3.1 Factorisation-based Models for KGC

In factorisation-based models, which we assume to be DistMult, the entity encoder f
and the relation encoder g, are simply parameterised as look-up tables, associating each

entity and relation with a continuous distributed representation:

fs(v) = @v], ¢ € RIEXE  and gy(r) =[], ¥ € RIRIXK 4.4)

The corresponding score function is then given by

Lo(v,r,w) = ([v], ¢[w], g(r)) = Z Plvliplwlip[ri. (4.5)
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4.3.2 GNN-based Models for KGC

GNNs were originally proposed for node or graph classification tasks [Gori et al/, 2005,
Scarselli et al., 2009]. To adapt them to KGC, previous work has explored two different
paradigms: node-wise entity representations [Schlichtkrull et al|, 2018] and pair-wise
entity representations [[Teru et al,, 2020, Zhu et al), 2021]]. Though the latter paradigm
has shown promising results, it requires computing representations for all pairs of nodes,
which can be computationally expensive for large-scale graphs with millions of entities.
Additionally, node-wise representations allow for using a single evaluation of f4(v) for
multiple queries involving v, resulting in faster batch evaluation.

Models based on the first paradigm differ from pure FMs only in the entity encoder
and lend themselves well for a fair comparison with pure FMs. We will therefore focus
on this class and leave the investigation of pair-wise representations to future work. Let
4o 1 G X X = Jgen+ R¥*X be a GNN encoder, where G = {G | G € € x R x £}
is the set of all possible multi-relational graphs defined over £ and R, and X is the
input feature space, respectively. Then we can set f;(v) = ¢4(7,X)[v]. Following
the standard message-passing framework [Gilmer et al,, 2017, Battaglia et al., 2018,
Hamilton] used by the GNNs, we view g3 = ¢¥ o ... o ¢' as the recursive composition of
L € N7 layers that compute intermediate representations {h'} for I € {1,..., L} with
h® = X for all entities in the KG. Each layer ¢' producing representation h; is made up

of the following three functions:

1. A message function ¢i; : RE x R x RX — RX that computes the message along
each edge. Given an edge (v, 7, w) € T, the message function g}, not only makes
use of the node states h'~*[v] and h'~![w] (as in standard GNNs) but also uses the

relation r; denote the message as

ml[v,r, w| = q]l\,[ (hl_l[v],r, hl_l[w]) :

2. An aggregation function ¢ : |Jgoy R®*® — RX that aggregates all messages

from the 1-hop neighbourhood of a node; denote the aggregated message as

2] = ¢l ({ml[v,r, w] | (r,w) € ./\/l[v]}) :
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3. An update function q}; : RE x RE — R that produces the new node states h' by

combining previous node states h'~! and the aggregated messages z':

W'[v] = qu(h'" o], 2! [v]).

Different parametrisations of ¢i;, ¢4, and ¢, lead to different GNNs. For example, R-
GCNs [Schlichtkrull et al., 2018] define the ¢}, function using per-relation linear transfor-
mations m'[v, 7, w| = mWf h!~[w], where TW! denotes the weight matrix associated
with relation 7 and N} [r, v] represents the degree of v under relation r; ¢/, is implemented
by a summation and ¢}, is a non-linear transformation h![v] = o(z![v] + W{h'tv]),
where o is the sigmoid function. For each layer, the learnable parameters are {W'},cr
and W/, all of which are matrices in RX*¥ . Sometimes applying GNNs over an entire
graph might not be feasible due to the size of the graph. Hence, in practice, f4(v) can
be approximated with sampled sub-graphs [Hamilton et al}, 2017, Zou et al|, 2019, Zeng
et al., 2020], such as L-hop neighbourhood around node v denoted as N- L [v]:

fo(v) = (T, Xnz) [v]- (4.6)

4.4 Implicit Message-Passing in FMs

The sharp difference in analytical forms might give rise to the misconception that GNN's
incorporate message-passing over the neighbourhood of each node (up to L-hops), while
FMs do not. In this work, we show that by explicitly considering the training dynamics of
FMs, we can uncover and analyse the hidden message-passing mechanism within FMs.
In turn, this will lead us to the formulation of a novel class of GNNs well suited for
multi-relational link prediction tasks (Section @). Specifically, we propose to interpret
the FMs’ optimisation process of their objective as the entity encoder. After randomly
initialising the parameters ¢ of the look-up table, FMs are typically trained to minimise
the loss £ (Equation @). If we consider, for simplicity, a gradient descent training

dynamic, then the entity encoder operating on a given node v, f4(v), can be rewritten
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as the outcome of a series of gradient descent steps:

for(v) = ¢'[0]
= GD'(¢", T[]
= GD'oGD" (¢ 2, T)[v]
=GD'o- -0 GDY(¢", T)[v] 4.7)

tgradient steps

where ¢! is the embedding vector at the ¢-th step, t € N7 is the total number of training
iterations, and ¢° is a random initialisation of the look-up table. GD is the gradient

descent operator, which we can expand by substituting in the objective £ (Equation @):

GD(¢,T) = ¢ — BVyL (4.8)
dlog P(wl|v,r)
—gra Y Teellulen) @9)
(v,r,w)ET

where @ = (|T|~! with a learning rate 3 > 0. We now dissect Equation @ in two
different but equivalent ways. In the first, which we dub the edge view, we separately
consider each addend of the gradient V4 L. In the second, we aggregate the contributions
from all the triplets to the update of a particular node. With this latter decomposition,
which we call the node view, we can explicate the message-passing mechanism at the
core of the FMs. While the edge view suits a vectorised implementation better, the node
view further exposes the information flow among nodes, allowing us to draw an analogy

to message-passing GNNss.

4.4.1 The Edge View

Each addend of Equation @ corresponds to a single edge (v, r,w) € T and contributes
to the update of the representation of all nodes. The update on the representation of the
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subject v contributed by this edge can be written as:

dlog P(wl|v,r)

GD(¢, {(v,r, w)})[v]= o[v] +

d¢v]
0log Z‘Efﬁ;’&fl )
=50
B Il (v, 7, w) Ol (v, r, u)
= ¢[v] + « ( o] %P ulv, r)—ad)m )
= ¢[v] +a 9 wl— " Py(ulv, r)g(r) © ¢[u]
w—w o U€E _

u—)’l)

Step two follows by substituting the softmax expression for the conditional probability
(Equation ) and take gradients of the log softmax, where the critical part is the treat-

ment of the gradient of the log partition function:

dlog" exp(I'(-,u)) Ze xp(T or or

0pv] ~ S exp(l ¢[ ]

exp( or 8_F
ZZexp >>a¢u ;P(““amw'

Step three results from taking the gradient of the score function I' (Equation ):

Or (v, row) _ {9lo]. oful g(r)) _
90[0] 90[0]

g9(r) © g[w].

We discuss the meaning underlying this decomposition. The w — v term represents
information flow from w (a positive neighbour of v) to v, thereby increasing the score
of the gold triplet (v, 7, w). In contrast, the v — v term captures information flow
from global pseudo-negative nodes {u € £}, which serves to decrease the scores of
triplets (v, 7, u). Fundamentally, the term v — v is induced by the partition function
in the denominator of the conditional probability (Equation ). Due to the 1vsAll

setting, the conditional probability Py(w | v,r) is computed over all entities in £. As
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a result, the model incorporates signals from pseudo-negative edges linking v across
the entire vocabulary {u € £} when updating the representation of the subject v. This
negative contribution can be seen as a global repulsion to ensure that truly informative
neighbours maintain strong influence. Note that the “negative” here is about the non-
existing edges that are automatically considered due to the 1vsAll loss. This is different
from the negative neighbourhood, which is from existing edges. There negative sign
N[v] ={(r,s) | (s,r,v) € T} means the in-coming as opposed to outgoing.

Similarly, for the object w, we have

GD(¢, { (v, r, w)})[w] = ow] + a(l = Fy(w|v, 7)) g(r) © o[v],

~~
v—w

where, again, the v — w term indicates information flow from the neighbouring node v.

Finally, for the nodes other than v and w, we have

GD(o. {(v.r,w) Pl = 8fu] + | —Py(ulv,r)plo] © g(r)

~\~
v—Uu

4.4.2 The Node View

To fully uncover the message-passing mechanism of FMs, we now focus on the gradient
descent operation over a single node v € &, referred to as the central node in the GNN

literature. Recalling Equation @, we have:

dlog P(w|v,r)

4.10
0[] : (4.10)

GD(¢, T)[v] = o] + o Y

(v,r,w)ET

which aggregates the information stemming from the updates presented in the edge view.
The next theorem describes how this total information flow to a particular node can be
recast as an instance of message passing (cf. Section ). We defer the full proof to
Appendix and present a proof sketch here.

Theorem 4.4.1 (Message passing in FMs). The gradient descent operator GD (Equation
) on the node embeddings of a DistMult model (Equation ) with the maximum
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likelihood objective (Equation 4.3)) and a multi-relational graph T defined over entities

& induces a message-passing operator whose composing functions are:

[ emlegm) i) €MD
(6], ol { o) oy @
aa({m[v,r,w] : (r,w) € N'[v]}) = Z mlv,r, wl; 4.12)
(raw)eN1v]
qu(¢[v], z[v]) = olv] + azlv] — Bn[v], (4.13)
where, defining the sets of triplets T " = {(s,r,0) € T : s# v Ao # v},
bl = B ey Burongtr) © ol + TBn Aiels o) @ o

where PNi ] and Pr-. are the empirical probability distributions associated to the re-

spective sets.

Proof Sketch (Proof Sketch for Theorem ). We outline how a single step of gradient
descent (Equation ) on the node embeddings of a DistMult model (Equation 4.4) with
a softmax-based likelihood (Equation #.3) induces a message-passing operator.

Setup and Assumptions. We consider a multi-relational graph T over entities £
and relations R. Each entity v € £ is associated with an embedding ¢[v]. The DistMult

model defines the conditional probability of a tail entity given a head and relation as:

exp(['(v, r,w))

Pt = 5 e )

where I' (v, r,w) = (o[v], g(r), dlw]). We assume no self-loops (i.e., (v,r,v) notin T).
Gradient Decomposition. The gradient of the log-likelihood w.r.t. ¢[v] is a sum over

the triples comprising the training graph

dlog P(w|v,r)
2wkl

(v,r,w)ET
which splits into:
* Outgoing edges of v: (v, r, w) yield terms pulling ¢[v] toward ¢p[w| ® g(r). At the
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same time, the partition function induced by the denominator of the IvsAll loss
yields terms pushing ¢[v] away from global pseudo-negative entities g(r) © ¢lu|
foru € € modulated by P(ulv,r).

* Incoming edges of v: (w,r,v) yield terms pulling ¢[v] towards g(r) ® ¢|w| mod-
ulated by 1 — P(v|w,r).

* Non-local edges: (s,r,o0) Triplets not involving v but in the training graph still
affect ¢[v] due to v’s appearance in the partition function, producing a term pro-
portional to —P(vl|s,r)g(r) ® ¢[s].

Message-Passing Form. Collecting these categories and regrouping them based on

if the term comes from v’s neighbourhood, yielding:

* A message function g (p[v], r, p[w]) from local neighbours, where messages along

outgoing edges and incoming edges have different forms.

* Anaggregation function qx summing all messages from neighbourhood producing

z[v]

* A correction term n[v] from the global partition of outgoing edges and the non-

local edges.

* An update rule:

O[v] = qu(olv], 2[v]) = ¢[v] + az[v] — fn[v],
with step sizes «, (3.

This establishes equivalence between DistMult’s gradient update and a message-

passing architecture with global context.

What emerges from the equations is that each GD step contains an explicit informa-
tion flow from the neighbourhood of each node, which is then aggregated with a simple
summation. Through this direct information path, ¢ GD steps cover the ¢-hop neighbour-
hood of v. As t goes towards infinity or in practice as training converges, FMs capture
the global graph structure. The update function (Equation ) somewhat deviates from
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classic message passing frameworks as n[v] of Equation involves global informa-
tion. However, we note that we can interpret this mechanism under the framework of
augmented message passing [Velickovid, 2022] and, in particular, as an instance of graph
rewiring, where n[v] represents rewired edges to global nodes that are not in the local
neighbourhood.

Based on Theorem and Equation @, we can now view ¢ as the transient node
states h (cf. Section ) and GD on node embeddings as a message-passing layer.

This dualism sits at the core of the ReFactor GNN model, which we describe next.

4.5 ReFactor GNN: Inductivising Factorization based
Models

FMs are trained by minimising the objective (Equation @), initialising both sets of pa-
rameters (¢ and 1) and performing GD until approximate convergence (or until early
stopping terminates the training). The implications are twofold: %) the initial value of
the entity lookup table ¢ does not play any major role in the final model after conver-
gence, and i7) if we introduce a new set of entities, the conventional wisdom is to re-
trainf the model on the expanded knowledge graph. This can be computationally rather
expensive and operationally complex, compared to the “inductive” models that require
no additional training and can leverage node features like entity descriptions.

However, as we have just seen in Theorem , the training procedure of FMs may
be naturally recast as a message-passing operation, which suggests that it is possible to
use FMs for inductive learning tasks. In fact, we envision that there is an entire novel
spectrum of model architectures interpolating between pure FMs and (various instanti-
ations of) GNNs. Here we propose one simple implementation of such an architecture
which we dub REFacTor GNNs. Figure gives an overview of REFAcTor GNNs.

The REFacTor Layer A ReFactor GNN contains L REFAcTOR layers, that we derive
from Theorem . Aligning with the notations in Section , given a knowledge
graph 7 and entity representations h'~! € RI€I*KX the REFacToRr layer computes the

Typically, until convergence and possibly by partially warm-starting the model parameters.
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—n[<1] PO [ w, 1)

local

I =Py | v, 1)
Pl,] © g(r)

Figure 4.2: ReFactor GNN architecture. The left figure describes messages from the
local neighbourhood {(vq, 71, v1), (vs, 72, v1), (v1,73,v4)} (the orange and blue edges,
which depend on the type of relationship of the edges) and a global normaliser term
induced by the partition function (the purple arrow); The right figure describes the com-
putation graph for calculating P(v | w,7), where v,w € £ and r € R: the embedding
representations of w, r, and v are used to score the edge (w, r, v) via the scoring function
I", which is then normalised via the SoftMax function.

representation of a node v as follows:

A v] = (T, A" H[v] = A o] — Bntv] +« Z ¢y (R o], r, B w]), (4.15)
(ryw)eN ]

where the terms n! and ¢!, are derived from Equation and Equation , respec-
tively. We note that REFactor GNNs treat incoming and outgoing neighbourhoods
differently instead of treating them equally as in for example the R-GCN, the first GNN
on multi-relational graphs [Schlichtkrull et al., 2018].

Equation describes the full batch setting, which can be expensive if the KG
contains many edges. Therefore, in practice, whenever the graph is big, we adopt a
stochastic evaluation of the REFacToRr layer by decomposing the evaluation into several
mini-batches. We partition 7 into a set of computationally tractable mini-batches. For
each mini-batch, we restrict the neighbourhoods to the subgraph induced by it and

readjust the computation of n![v] to include only entities and edges present in it.
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We leave the investigation of other stochastic strategies (e.g. by taking Monte Carlo
estimations of the expectations in Equation ) to future work. Finally, we cascade
the mini-batch evaluation to produce one full layer evaluation (i.e. one message-passing

round over the entire graph).

Training The learnable parameters of REFacTor GNN5s are the relation embeddings
1), which parameterise the g(r) in the message function ¢}, € [1, L]. Inspired by Fey
et al| [2021]], You et al. [2020], we learn 1) by layer-wise (stochastic) gradient descent.
This is in contrast to conventional GNN training, where one needs to backpropagate
through all the message-passing layers [ € [1, L]. A (full-batch) GD training dynamic

for ¢) can be written as

e cht(wt)

with:

1
£t(¢t) = E - |7-‘ lOg Pwt (UJ‘U, T)
T

where P, (w|v,r) = Softmax(T'(v,r,-))[w] T(v,r,w) = (h'[v], h'[w], gy, (r)).

h'[-] denotes the node state of a particular node at iteration ¢ and the node state is updated

recursively as

h° = X, initial node features

. l - (4.16)
h'=q (T,h" " )where l =t mod L, > 1.

This dynamic ensures that at each step ¢, only the current layer [ = ¢t mod L € [1, L] is
activated and participates in the backpropagation. Early layers < [ are truncated from the
computational graph by treating h*~! as a fixed (non-differentiable) input for the current
layer, bounding the gradient path to a single layer per training step. Such truncation of
the computational graph to reduce memory usage is not uncommon and have been used
in meta-learning algorithms [Chen et al, 2019] and for GNN scaling techniques [Fey
et all, 2021]].
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Figure 4.3: Illustration of the external node state cache used during training.

External cache, its push, pull, and clear. Implementation-wise, such a training dy-
namic equals to maintaining an external memory for storing and retriving historical node
states h'~! to compute h! using Equation . Figure @ illustrates the external cache.
During the model optimisation, the historical node states are fixed. After each training
step, newly computed node states are pushed to update the historical cache. But this
push occurs after gradient computation, and these historical vectors are not part of the
current backpropagation path. After every L full batches, we clear the cache by reset-
ting all node states in the cache to their initial input values X (e.g., textual or random
features). This procedure of push, pull, and clear, emulates an unrolling of the message-
passing dynamic up to L layers, and forces the model to predict based on on-the-fly L-
layer message-passing. After training, we obtain 1* and perform inference by running
L-layer message-passing with ¢)*.  In general, L determines the number of effective
message-passing layers in REFActor GNNs. A larger L enables REFacTtor GNNs to
fuse information from more hops of direct neighbourhoods into the final node repre-
sentations. In the meantime, it reduces the inductive applicability of REFacTor GNNs
due to over-smoothing and computational requirements. In the extreme case of L = oo,
where we never clear the node state cache during training, the final cached node states
will be used for inference. Note that this latter inference regime is inherently transduc-
tive since there will be no cached states for new nodes. Future work may explore a more
streamlined implementation by simply resetting the entity embeddings periodically as in
Chen et al. [2023].
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Relation to prior work While our use of caching is inspired by AutoScale [Fey et al,
2021]], our model diverges in key ways. Unlike Fey et al. [2021]], where the historical
node states are only used for out-of-batch neighbour nodes, we use historical node states
for all nodes. Fey et al. [2021] define only the “push” and “pull” operations for the mem-
ory. We additionally define a “clear” operation for the memory. This cache-clearing
mechanism acts as a form of active forgetting, which we introduce to promote inductive
capability. Work in the spirit of active forgetting has been extensively explored in the
continual learning literature as a mechanism for improving adaptability and reduce over-
fitting to past learnings. For instance, neural pruning removes low-activity neurons to
free capacity for future tasks [Golkar et al.]; episodic backward updates selectively dis-
card outdated gradients to favor recent learning [Lee et al., 2019]; and meta-experience
replay strategies [Riemer et al]] reduce gradient interference, effectively suppressing
conflicting knowledge. Our cache reset parallels these approaches by clearing outdated
node embeddings, thereby preventing over-specialization and supporting generalization
to unseen entities. These modifications are essential in adapting static factorisation mod-
els into a dynamic, message-passing framework suitable for both transductive and induc-

tive link prediction tasks.

4.6 Experiments
We perform experiments to answer the following questions regarding REFacTor GNNis:

* RQ1. ReFactor GNNs are derived from a message-passing reformulation of FMs:

do they also inherit FMs’ predictive accuracy in transductive KGC tasks? (Section

b.6.1)

* RQ2. ReFactor GNNs “inductivise” FMs. Are they more statistically accurate than
other GNN baselines in inductive KGC tasks? (Section )

* RQ3. The term n[v] involves nodes that are not in the 1-hop neighbourhood. Is such

augmented message passing [Velickovié, 2022] necessary for good KGC performance?

(Section )
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For transductive experiments, we used three well-established KGC datasets: UMLS,
CoDEx-S, and FBI5K237 [Kemp et al., 2006, Safavi and Koutra, 2020, Toutanova and
Chen, 2015]. For inductive experiments, we used the inductive KGC benchmarks intro-

duced by GralL [[Teru et al,, 2020], which include 12 pairs of knowledge graphs:
* (FB15K237_vi, FBI5K237 vi_ind),
* (WNISRR_vi, WNISRR _vi_ind),
* (NELL_vi, NELL_vi_ind),

where i € [1,2,3,4], and (_vi, _vi_ind) represents a pair of graphs with a shared rela-
tion vocabulary and non-overlapping entities. Note that the GralL setup is different
from a completely inductive setup, where both the relations and entities are unseen at
test time.

We follow the standard KGC evaluation protocol by fully ranking all the candidate
entities and computing two metrics using the ranks of the ground-truth entities: Mean
Reciprocal Ranking (MRR) and Hit Ratios at Top K (Hits@ K) with K € [1,3,10].
For the inductive KGC, we additionally consider the partial-ranking evaluation protocol
used by GralL for a fair comparison. Empirically, we find full ranking more difficult
than partial ranking, and thus more suitable for reflecting the differences among models
on GralL datasets. In fact, we would like to call for future work on GralL datasets to
also adopt a full ranking protocol on these datasets.

Our transductive experiments used .. = oo, i.e. node states cache is never
cleared, as we wanted to see if REFAcTOrR GNNs (L. = o0) can reach the perfor-
mance of the FMs (Section ); on the other hand, in our inductive experiments,
we used REFactor GNNs with L € {1,2,3,6,9}, since we wanted to test their per-
formances in inductive settings akin to standard GNNs (Section ). We used
a hidden size of 768 for the node representations. All the models are trained using
[128, 512] in-batch negative samples and one global negative node for each positive link.
We performed a grid search over the other hyperparameters and selected the best configu-
ration based on the validation MRR. Since training deep GNNs with full-graph message
passing might be slow for large knowledge graphs, we follow the literature [Hamilton
et al), 2017, Zou et al/, 2019, Zeng et al., 2020] to sample sub-graphs for training GNNs
as indicated by Equation @ Considering that sampling on the fly often prevents high
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Table 4.1: Test MRR for transductive KGC tasks.

Entity Encoder UMLS CoDEx-S FB15K237

R-GCN - 0.33 0.25
Lookup (FM, specif. DistMult) ~ 0.90 0.43 0.30
ReFactor GNNs (L = o)  0.93 0.44 0.33

utilisation of GPUs, we resort to a two-stage process: we first sampled and serialised
sub-graphs around the target edges in the mini-batches; we then trained the GNNs with
the serialised sub-graphs. To ensure that we have sufficient sub-graphs for training the
models, we sampled for 20 epochs for each knowledge graph, i.e. 20 full passes over the

full graph. The sub-graph sampler we currently used is LADIES [Zou et alJ, 2019].

4.6.1 RQ1: REFacTor GNNs for Transductive Learning

ReFactor GNNs are derived from the message-passing reformulation of FMs. We ex-
pect them to approximate the performance of FMs for transductive KGC tasks. To verify
this, we perform experiments on the datasets UMLS, CoDEx-S, and FB15K237. For a
fair comparison, we use Equation #.2 as the decoder and consider 1) lookup embedding
table as the entity encoder, which forms the FM when combined with the decoder (Sec-
tion ), and 11) REFactor GNNs as the entity encoder. Note that the equivalence
between REFacTor GNNs and the standard FMs are only obtained when ReFacTor
GNNs are trained with L = o0, 1.e. we never clear the node state cache. This is different
from inductive setups, where REFacTtor GNNs are trained with a finite L. Since trans-
ductive KGC tasks do not involve new entities, the node state cache in REFactor GNNs
can be directly used for link prediction. Table summarises the result. We observe
that REFacTor GNNS5s achieve a similar or slightly better performance compared to the
FM. This shows that REFacTor GNNss are able to capture the essence of FMs and thus
remain competitive at transductive KGC.

4.6.2 RQ2: REFAacTOor GNNs for Inductive Learning

Despite FMs’ good empirical performance on transductive KGC tasks, they fail to be as

inductive as GNNs. According to our reformulation, this is due to the infinite message-
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passing layers hidden in FMs’ optimisation. Discarding infinite message-passing layers,
ReFactor GNNs enable FMs to perform inductive reasoning tasks by learning to use a
finite set of message-passing layers for prediction similarly to GNNss.

Here we present experiments to verify REFactor GNNs’s capability for inductive
reasoning. Specifically, we study the task of inductive KGC and investigate whether
ReFactor GNNs can generalise to unseen entities. Following [Teru et al. [2020], on
GralL datasets, we trained models on the original graph, and run 0-shot link prediction
on the _ind test graph. Similar to the transductive experiments, we use Equation
as the decoder and vary the entity encoder. We denote three-layer REFactor GNNs
as ReFactor(3) and six-layer REFactor GNNs as ReFactor (6). We consider sev-
eral baseline entity encoders: 1) no-pretrain, models without any pretraining on the
original graph; ii) GAT (3), three-layer graph attention network [Veli¢kovi¢ et al., 2018];
ii1) GAT(6), six-layer graph attention network; iv) GraIL, a sub-graph-based relational
GNN [[Teru et al., 2020]; v) NBFNet, a path-based GNN [Zhu et al/, 2021], current SoTA
on GralL datasets. In addition to randomly initialised vectors as the node features, we
also used textual node features, RoOBERTa [Liu et al., 2019a] Encodings of the entity de-
scriptions, which are produced by SentenceBERT [Reimers and Gurevych, 2019]. Due
to space reason, we present the results on (FBI5K237_v1, FBI5K237 v1_ind) in Fig-
ure @ Results on other datasets are similar and can be found in the appendix. We
can see that without textual node features, REFActor GNNs perform better than GralLL
(+23%); with textual node features, REFactor GNNs outperform both GralLL (+43%)
and NBFNet (+10%), achieving new SoTA results on inductive KGC.

Performance vs Parameter Efficiency as #Message-Passing Layers Increases Usu-
ally, as the number of message-passing layers increases in GNNs, the over-smoothing is-
sue occurs while the computational cost also increases exponentially. REFactor GNNs
avoid this by layer-wise training and sharing the weights across layers. Here we compare
ReFactor GNNs with {1, 3, 6, 9} message-passing layer(s) with same-depth GATs. Re-
sults are summarised in Figure @ We observe that increasing the number of message-
passing layers in GATs does not necessarily improve the predictive accuracy — the best
results were obtained with 3 message-passing layers on FBI5K237_vl while using 6
and 9 layers leads to performance degradation. On the other hand, REFacTor GNNs ob-

tain consistent improvements when increasing #Layers from 1 to 3, 6, and 9. REFacTor
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Figure 4.4: Inductive KGC performance, trained on the KG FB/5K237 _vI and tested on
another KG FBI5K237_vI_ind, where the entities are completely new. The results of
GralLL and NBFNet are taken from chu et alJ [hOZ 1|]. The grey bars indicate methods
that are not devised to incorporate node features.

GNNs (6,6) and (9,9) clearly outperform their GAT counterparts. Most importantly,
ReFactor GNNs are more parameter-efficient than GATs, with a constant #Parameters

as #Layers increases.

4.6.3 RQ3: Beyond Message-Passing

As shown by Theorem , ReFactor GNNs contain not only terms capturing infor-
mation flow from the 1-hop neighbourhood, which falls into the classic message-passing
framework, but also a term n[v] that involve nodes outside the 1-hop neighbourhood.

The term n[v] can be treated as augmented message-passing on a dynamically rewired

graph [|Veliékovid, hOZQI]. Here we perform ablation experiments to measure the im-

pact of the n[v] term. Table summarises the ablation results: we can see that, with-
out the term n[v], REFaActor GNNs with random vectors as node features yield a 2%
lower MRR, while REFactor GNNs with ROBERTa textual encodings as node features
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Figure 4.5: Performance vs parameter efficiency on FBI5K237 vi. Left axis is Test
MRR while right axis is #parameters. The solid lines and dashed lines indicate the
changes of Test MRR and the changes of #parameters.

Table 4.2: Ablation on n[v] for REFActor GNNs (6) trained on FBI15K237 vl.

Test MRR With Random Features With Textual Features

with n[v] 0.425 0.486
without n2[v] 0.418 0.452

produce a 7% lower MRR. This suggests that augmented message-passing also plays a
significant role in REFAcTor GNNs’ generalisation properties in downstream link pre-

diction tasks. Future work might gain more insights by further dissecting the n[v] term.

4.7 Discussion

Summary. The task of multi-relational link prediction forms the cornerstone of con-
structing useful knowledge graphs, which, in turn, underpin modern knowledge engines.
Factorization Models (FMs) and Graph Neural Networks (GNNs) are two prominent ap-
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proaches for this task. FMs excel in transductive settings, while GNNs are better suited
for inductive scenarios. Despite the sharp differences in their analytical forms, our work
establishes a link between FMs and GNNs. By reformulating FMs as GNNs, we address
a critical question: why are FMs superior transductive multi-relational link predictors
but fail in inductive scenarios? The answer lies in FMs performing excessive message-
passing in standard training, capturing excessive global structures, and producing overly
rigid representations.

Building on this insight, we propose REFacTor GNNs, a novel GNN variant that
incorporates an active forgetting mechanism into the message-passing process of FMs.
ReFactor GNNss periodically reset the cache of prior message-passing computations,
enabling the model to focus on local neighbourhood information instead of over-relying
on the entire training graph. Empirical experiments demonstrate that REFActor GNNs
achieve significantly higher accuracy than GNN baselines on inductive link prediction
tasks, bridging the gap between the strengths of FMs and GNNs.

Limitations. Since we adopted a two-stage (sub-graph serialisation and then model
training) approach instead of online sampling, there can be side effects from the low
sub-graph diversity. In our experiments, we used LADIES [Zou et al., 2019] for sub-
graph sampling. Experiments with different sub-graph sampling algorithms, such as
GraphSaint [Zeng et alJ, 2020] might affect the downstream link prediction results. Fur-
thermore, it would be interesting to analyse decoders other than DistMult, as well as
additional optimisation schemes beyond SGD and AdaGrad. We do not dive deeper into
the expressiveness of REFAcTor GNNs. Nevertheless, we offer a brief discussion in

Section .

Implications. The most direct future work would be using the insight to develop more
sophisticated models at the intersection between FMs and GNNs, e.g. by further param-
eterising the message/update function. One implication from our work is that reformu-
lating FMs as message-passing enables the idea of “learning to factorize”. This might
broaden the usage of FMs, going beyond link prediction, to tasks such as graph classifi-
cation. Another implication comes from our approach of unpacking embedding updates
into a series of message-passing operations. This approach can be generalised to other

dot-product-based models that use embedding layers for processing the inputs, lend-
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ing it naturally to understanding complicated attention-based models like Transformers.
Although Transformers can be treated as GNNs over fully-connected graphs, where a
sentence would be a graph and its tokens would be the nodes, the message-passing is
limited to within each sentence under this view. We instead envision cross-sentence
message-passing by reformulating the updates of the token embedding layer in trans-
formers. In general, the direction of organising FMs, GNNs, and transformers under the
same framework will allow a better understanding of all three models. While FMs and
GNNss excel in the structured paradigm, transformers are often the default choice for the
unstructured paradigm. Unveiling the connections among these models can facilitate
the seamless integration of the structured and unstructured paradigm, paving the way for

building universal knowledge engines.
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Chapter 5

Improving Language Plasticity via

Pretraining with Active Forgetting

A version of this work was previously presented at a peer-reviewed conference. Please refer to
[Chen et al., 2023 ] for full citation.

Reality is full of constantly changing details. To navigate such dynamism, intelligent
agents must adapt to new information in real time. This requires mechanisms that sup-
port flexible knowledge integration. Active forgetting (Chapter @]) appears to be one
such mechanism: by actively forgetting historical node states resulted from previous
message-passing computation, factorization-based models — representatives of the struc-
tured paradigm — can learn to accommodate new entity nodes in knowledge graphs,
weaving them into the fabric of existing knowledge. At its core, active forgetting mani-

fests an emergent principle of destructuring:

To remain adaptable in changing environments, intelligent units (e.g., agents,
models, humans) must not only construct knowledge, but also deliberately

dismantle parts of it.

Increasingly, similar manifestations of such intentional destructuring have been iden-
tified across domains including but not limited to psychology, neuroscience, educa-
tion, and artificial intelligence [Levy et al.,, 2007, Barrett and Zollman, 2009, Hardt
et all, 2010, 2013, Anderson and Hulbert, 2021, Nikishin et al}, 2022, Zhou et al/, 2022,
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Ramkumar et al/, 2023], reinforcing the idea that intelligence, especially its fluid side [Cat-
tell, 1963, Horn and Cattell, 1966, Brown, 2016, Kent, 2017], relies as much on destruc-
turing as on structuring. Structuring provides the foundations for consistent reasoning
and repeatable knowledge serving. Destructuring, on the other hand, overcomes out-
dated and overly-rigid structures.

One of the key challenges in materializing the destructuring principle is to find the
targets to dismantle. For natural intelligence, the targets of destructuring can be both cog-
nitive and psychic structures. For instance, dismantling entrenched associative thinking
patterns can lead to novelty in idea generation [Horan, 2009], while breaking down rigid
psychic structures increases mental mobility, turning behavioural rigidity into feeling,
thinking, and action [Sandell, 2019]. Similarly, inhibition of linguistic structures from
one’s native language plays an important role in acquiring a second language [Levy et all,
2007, MacWhinney, 2005, Schmid, 2017].

For artificial intelligence, the targets of destructuring remain understudied. Partially
because scaling model sizes is the focus right now as it is more prominent in improv-
ing benchmark numbers. However, as more and more inappropriate behaviours by these
models are exposed [Farquhar et al), 2024, Shumailov et al), 2024], it becomes more
and more important to underpin these inappropriate structures inside the models. Chap-
ter @ and @ show that certain structures are stored in the embeddings and their interactions
with other layers in both the structured and unstructured learning paradigms. This per-
spective offers tangible structural underpinnings to the embedding layer. Chapter E] fur-
ther explains the role of embedding and chose them as the targets for destructuring, with
evidences showing this helps models accommodate new entities in the knowledge graphs.
While the findings from Chapter E] are limited to the structured learning paradigm, an
important question arises: can similar destructuring techniques benefit models operating
in the unstructured paradigm. Specifically, we ask can pretrained language models, the
predominant tools for constructing knowledge engines from unstructured data sources,

benefit from destructuring techniques?

5.1 Towards Language Model Plasticity

Pretrained language models (PLMs) have been swiftly reshaping the landscape of natu-

ral language processing (NLP) by improving upon standardized benchmarks across the
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board [Radford and Narasimhan, 2018, Devlin et al., 2019, Liu et al/, 2019b, Brown et al |,
2020]. They are often regarded as the Swiss Army knife of the unstructured paradigm
for building general knowledge engines. At their core, they acquire knowledge by in-
gesting large datasets and store this knowledge in their parameters during pretraining.
Using finetuning or prompting [Brown et al., 2020], such knowledge can then be applied
to downstream applications, such as semantic analysis, question answering, writing as-
sistance, coding companion, and many others.

Despite their success, PLMs still have a number of shortcomings [Weidinger et al,
2021, 2022]. In particular, it requires massive data and computation to pretrain them [Gu-
rurangan et al., 2020, Kaplan et all, 2020, Hernandez et al., 2021, Hu et al., 2021, Tou-
vron et al., 2023b]. Naively retraining a new PLM to accommodate every lingual space
shiftl would be prohibitively expensive. This makes it a highly relevant research target
to create PLMs that can be efficiently adapted to new lingual spaces.

While forgetting in the context of both human and machine learning is often per-
ceived as something negative (for instance in the case of catastrophic forgetting where
learning new tasks overwrites the old knowledge [McCloskey and Cohen, [1989, Rat-
clift, 1990, Kirkpatrick et all, 2017]), recent works have shown that for artificial neural
networks, forgetting can also play a positive role in increasing their “plasticity”, such
as improving generalization to unseen data [Zhou et al., 2022, Chen et al., 2022, Igl
et al), 2021], enabling learning in low-data regimes [Alabdulmohsin et al.,, 2021, Taha
et al,, 2021]], or counteracting primacy bias [Nikishin et al), 2022, D’Oro et al/, 2023].
Although these pioneering works in continual learning do not explicitly define model
plasticity, they in essence share a common goal across different tasks and models: im-
proving a model’s ability to remain stable while adapting flexibly to drastically changing
inputs, addressing the stability-plasticity dilemma. Given these developments and their
insights, in this work, we explore if we can draw upon forgetting techniques as a mecha-
nism to improve pretraining and imbue PLMs with similar benefits in model plasticity.

It is well established in the NLP community that models struggle to generalize across
languages without substantial intervention [Conneau et al), 2020, Pfeiffer et all, 2020,

2022, Ansell et al), 2022], which is especially true for low-resources languages. We thus

"We use the term lingual space shift to describe changes in language usage between pretraining and
the target downstream application, caused by factors such as language change, time evolution, or domain
variation. A model with high language plasticity would quickly adapt to these shifts.
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Figure 5.1: Rewiring via relearning token embeddings: where the transformer body (the
purple part) is “frozen” and reused for a new language, but the token embeddings are
relearned to suit the new language.

see this as a promising testing ground for forgetting techniques. Our focus is on the input

layer of the PLM, the token embedding layer, as learning it has been shown to be highly

effective when adapting between languages [|Artetxe et alJ, tZOZd].

Concretely, we propose to introduce active forgetting mechanism into the pretraining
phase, which resets token embeddings at regular intervals, while leaving all other pa-
rameters untouched throughout pretraining. We study whether this forgetting approach
creates a PLM that can easily rewire (Figure ) to an unseen (possibly distant) lan-
guage. Intuitively, resetting embeddings forces the transformer body to re-derive rea-
soning each time instead of relying on memorized shortcuts. Through repetition, the
body learns more abstract, high-level reasoning. A model with greater abstraction can
easily transfer across languages, since high-level reasoning is more language-agnostic.

Our zero-shot evaluations on several cross-lingual transfer benchmarks show that for
cases where unlabeled adaptation corpus for the unseen language has as few as 5 million
tokens (a low-data regime), forgetting PLMs outperforms the baseline by large margins:
average gains of +21.2% on XNLI, +33.8% on MLQA, and +60.9% on XQuAD. In ad-
dition, models pretrained using active forgetting converge faster during language adapta-

tion. Finally, we find that active forgetting is especially beneficial for languages that are
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distant from English, such as Arabic, Hindi, Thai, and Turkish. Implementation-wise,
the method does not introduce significant overhead to the already complex pretraining
process, making it a cost-efficient way to promote a meta-learning-like effect. For those
interested in details, the code is available athttps: //github. com/facebookresearch/

language—-model-plasticity.

5.2 Literature Review: Forgetting, its Positive Roles, and

Cross-lingual Transfer

5.2.1 Forgetting and its Positive Role

The common perception of forgetting is that it implies weak memory and a loss of ac-
quired knowledge, thus it is often regarded as a sign of un-intelligence or an undesirable
property. In neural networks, catastrophic forgetting [McCloskey and Cohen, 1989,
Ratcliff, 1990, Kirkpatrick et al., 2017] is portrayed as a forgetting phenomenon where
neural networks lose the ability to predict old patterns after new inputs alter their weights.
Forgetting, in this context, has negative consequences, as the new knowledge overwrites
the prior valuable knowledge. Plenty of prior research strives to overcome catastrophic
forgetting and enable continual learning [Schmidhuber, 2013, Kirkpatrick et al., 2017,
Lopez-Paz and Ranzato, 2017, Shin et al., 2017, Schwarz et al}, 2018, Mallya and Lazeb-
nik, 2018, Parisi et al., 2019, Rolnick et all, 2019, Beaulieu et al., 2020, [Veniat et al.,
2020, Gaya et al., 2023, Khetarpal et al/, 2022].

Our work differs from the above ones in that our subject is intentional forgetting
rather than passive forgetting and its associated negative impact. To put it in another
way, we seek to understand how forgetting — if purposely incorporated as an active pro-
cess during training — might selp new learning. Similar positive roles of forgetting have
been discussed in the literature. Specifically, Pastotter et al| [2008] demonstrate for-
getting enhances the learning of new information by resetting the encoding process and
holding the attention at high levels; Levy et al) [2007] show that it helps second lan-
guage acquisition by inhibiting the native language; Barrett and Zollman [2009] find it
promote the emergence of an optimal language by preventing partial success from re-

inforce suboptimal practice. Ngrby [2015] further suggests forgetting serves adaptive
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functions, helping people regulate emotions, acquiring knowledge and staying attuned
to the context. More recently /Anderson and Hulbert [2021]] reviews evidence on active
forgetting by prefrontal control and shows how it can adapt the memory to suit either

emotional or cognitive goals.

5.2.2 Forgetting via Partial Neural Weights Reset

In neural networks, forgetting can be instantiated in many forms. A simple way is to
reset subsets of parameters before the next round of learning. Iterations of such reset-
ting have been shown to benefit generalization with low compute and low data for com-
puter vision tasks [Frankle and Carbin, 2019, Alabdulmohsin et al, 2021|, Taha et al,
2021, Ramkumar et al., 2023]. More recently, Zhou et al| [2022] demonstrate a similar
forgetting strategy helps image classification and language emergence. Closely linked
to the method in this chapter, Chapter @] forget node embeddings in order to truncate
infinite message-passing among nodes and thereby aid new graph reasoning with new
nodes. Our work uses similar forgetting mechanism over token embeddings, improving
new language reasoning with new tokens. As far as we know, we are the first to bring
forgetting into pretraining and demonstrate that forgetting pretraining boosts linguistic
plasticity. A relevant thread in reinforcement learning (RL) research studies the plas-
ticity loss phenomenon [Lyle et al/, 2023, Nikishin et al., 2023]. Recent work explores
similar forgetting approaches to improve plasticity. [gl et al, [2021] periodically reset
the current policy by distilling it into a reinitialised network throughout training. Intu-
itively, this releases network capacity storing suboptimal policies and opens up space
for the yet-to-be-discovered optimal (final) policy. Simpler methods just reset an agent’s
last layers [Nikishin et al, 2022], preventing overfitting to early experiences and primacy
bias. Resetting parameters also improves sample efficiency by allowing more updates

per environment interaction [D’Oro et al., 2023].

5.2.3 Cross-lingual Transfer for Pretrained Language Models

Pretraining on multilingual data makes PLMs multilingual [Conneau et al., 202(] but
has downsides like needing large multilingual corpus with appropriate mixing, potential
interference among languages, and difficulty of covering all languages. Alternatively,

the line of research on cross-lingual transfer makes PLMs multilingual by extending
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English-only PLMs to other languages. Artetxe et al| [2020] demonstrate possibility
of such extension by relearning the embedding layer with unsupervised data from the
new language. Marchisio et al, [2023] further increase computational efficiency using a
mini-model proxy. Liu et al. [2023a] use a similar partial reset-reinit approach in vision-
language settings. Approaches based on adapters and sparse finetuning have also been
proposed [Pfeiffer et al., 2020, 2022, 2021, Ansell et al., 2022]. Adapters are bottleneck
layers (usually placed after the feedforward layers) that add extra capacity when adapting
to a different task or language. Our proposed forgetting mechanism can be applied to
adapter-based methods as we can allow forgetting to happen in the adapter layers. The
current choice of forgetting embeddings keeps the architecture intact and incurs no ad-
ditional hyperparameter tuning, allowing us to understand the fundamental capability of

forgetting pretraining.

5.3 Rewiring PLMs for New Languages

Using unlabeled data, Artetxe et al, [2020] demonstrates possibility of rewiring a mono-
lingual PLM to a new language; they propose to relearn the embedding layer for the new
language while keeping all the other parameters frozen. The underlying assumption is
that the token embedding layer and the transformer body (the non-token-embedding pa-
rameters) divide up the responsibility in a way that the former handles language-specific
lexical meanings, while the latter deals with high-level general reasoning. Hence, rewiring
an English PLM for a new language boils down to separately adapting the former with
unlabelled data in the new language and the latter with English task data. The procedure

can be summarized as follows:

1. Pretrain: A transformer-based model is pretrained on an English corpus. In our
experiments, we choose to pretrain RoOBERTa-base Liu et al. [2019b], a 12-layer
transformer-based model, on English CC100 [Conneau et al., 2020].

2. Language Adapt: The token embedding layer is finetuned using unlabelled data in

the new language, while the transformer body is frozen.

3. : The is finetuned using downstream task data in

English, while the token embedding layer is frozen.
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Figure 5.2: Unsupervised zero-shot cross-lingual transfer. Left: in the pretrain stage,
we compare standard pretraining with forgetting pretraining, where the token embed-
dings are actively forgotten at a regular interval while the transformer body is learned
as the standard pretraining. Middle: the task adapt stage and the language adapt stage
separately adapt the transformer body using English task data and the token embeddings
using unlabelled data in the new language. Right: the assemble stage reassemble the
adapted body and token embedding layer into a usable PLM.

4. Assemble: The final model is assembled by taking the adapted token embedding
layer from stage 2 and the adapted transformer body from stage 3.

On The Difficulty of Rewiring PLMs via Relearning Token Embed-
dings

While the above procedure [Artetxe et al), 2020] offers a general framework for rewiring
a monolingual PLM with unlabelled data in the new language, it is unclear how efficient
such rewiring can be, including both sample efficiency and computational efficiency. To
better understand the difficulty of rewiring PLMs via relearning the token embeddings,
we design an experiment where we relearn the token embedding layer using varying
amounts of adaptation data. For illustration purpose, we pick English as the pseudo
“adaptation language” as its dataset is large enough to bootstrap a series of sub-datasets
with varying quantity.

We create subsets with [1K, 10K, 100K, 1M, 5M, 10M, 100M, 1B, 10B] tokens and
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Figure 5.3: The rewiring performance for standard PLMs (blue dashed line) drops dras-
tically if the adaptation tokens < 10M.

relearn the English embeddings while keeping the transformer body frozen.

The dashed blue line in Figure @ summarizes the influence of the adaptation data
quantity on the quality of the rewired PLMs (relearned embeddings assembled with the
English NLI task body). We can see that the standard PLMs are easy to rewire if there is
enough adaptation data. However, if the adaptation corpus contains fewer than 10 million
tokens, the performance of the rewired standard PLMs (the blue dashed line in the figure)
drops drastically as the adaptation data quantity goes down, from near 80 to around 35, a
random-guessing level for NLI tasks. This motivates us to create more rewirable PLMs,
i.e. PLMs with more plasticity so that the rewiring process can be faster and consume

less data.

5.4 Pretraining with Active Forgetting

Recent works have shown that incorporating forgetting through iterative weights reset-

ting can increase the “plasticity” of neural networks, enabling them to learn from small
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data and generalize better to unseen data in supervised learning [[Alabdulmohsin et alJ,
2021, [Taha et all, 2021}, Zhou et al., 2022]. Building on these efforts, we study if we can
bring such forgetting into the pretrain stage so that the resulting PLM would have more

plasticity, allowing easier rewiring to new languages.

Our Hypothesis. In effect, when Artetxe et al|[2020] relearned the token embedding
layer, the reinitialisation of the embeddings can be seen as forgetting applied once at
the start of the language adapt stage. However, the PLM (specifically the transformer
body) has never encountered forgetting before this stage and may struggle to handle this
new situation. Without early exposure to forgetting, the PLM might suffer from slow
recovery caused by forgetting before eventually benefiting from it. This inefficiency also
implies a lack of plasticity in the Transformer architecture. During standard pretraining,
token embeddings in the Transformer can encode excessive structures tied to the specifics
of their training languages so that other parts of these models become overly rigid to
the linguistic characteristics of the training language. The learning of a new lexical
embedding layer in a PLM henceforth consumes lots of data in new languages along
with long training horizons as shown in Section @ In this chapter, to ensure swift
learning of the new languages with both high sample efficiency and convergence rate,
we argue that the PLM must be exposed to forgetting during pretraining, allowing itself

to maximize the positive impact of forgetting and minimizing the cost of recovery.

Our Method. With this hypothesis in mind, we propose to add an active forgetting
mechanism to the pretraining procedure, which resets the token embedding layer peri-
odically as described in Algorithm . Concretely, the forgetting mechanism operates by
intentionally clearing the weights of the embedding layer, which stores the static rep-
resentations for all tokens, and reinitialising them to a new set of random values every
K gradient updates. Since pretraining involves advanced training strategies, like op-
timizers with states and learning rate schedulers, we also reset them together with the
token embedding layer. We refer to language models pretrained with such active forget-
ting mechanism as forgetting PLMs, in contrast to standard PLMs which are pretrained
in a standard way. The pretraining loss curve of a forgetting PLM is episodic (Figure
@), like in reinforcement learning or meta-learning. This episodic learning demon-

strates that the active forgetting mechanism can introduce diversity without requiring
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Algorithm 5: Active Forgetting Mechanism. The learning of token embedding
layer is reset every K updates.

Input: K: interval between two consecutive forgetting;

Tpody /emb: current effective number of updates for the body or the token embedding
layer;

Qipody /emb: current learning rate for the body or the token embedding layer;

P dy/emb’ Parameters after the n™ update for the body or the token embedding layer;

Op, dy /emb" optimizer states after the n™ update for the body or the token embedding
layer;

©: randomly initialised embedding parameters, each element drawn from A (0, 0.02);
f: function that computes the gradients w.r.t. the parameters using the sampled data;
g: function that updates the parameters based on the gradients (e.g., one step in Adam
optimizer);

s: function that updates the learning rate (e.g., one step in the polynomial learning rate
scheduler).

Output: The updated parameters and optimizer states:

P< M = (P P,

emb’
(n)  ~(n)
{Oemb ) Obody }

TNemb < N mod K;
Qpody < 8(Nbody) // Adjust learning rate for body based on n;
Olemb < S(nemb)§
G™ « f(P"=1 .)// Compute all gradients;
Pé:(fy,ot()zl)iy %g(Gt()Z()iy,Pé:dyl),ot(,zdyl),abody, n) // Update the transformer
body;
if n.;;, == 0 then
Pe(ml)) < O // Reset token embeddings and relevant optimizer
states;

(n—1)

Oemb

+ 0;

P(gt)), ém)b <_9(G(n) pin) ol 1),aemb,nemb) // Update the token

e emb> L emb 2 Qemb

embeddings;

actual new data. Each forgetting event kind of “branches out” a novel environment for

the model to explore, as if initiating a new episode of learning.
Research Questions. To further examine the proposed forgetting mechanism, we com-

pare forgetting PLMs and standard PLMs on sample efficiency and convergence speed

during language adapt, two key aspects of model plasticity. Our research investigates:
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Figure 5.4: Pretraining losses of forgetting and standard language models. The forgetting
mechanism brings an episodic pattern into the loss curve: every embedding forgetting
produces a loss spike, from which the model learn to recover. Through such repeats of
forget-relearn, the model gets used to learn new embeddings from scratch.

* RQI: Real-world low-resource languages often have scarce data for adapting mod-
els. Does pretraining with active forgetting impart enough plasticity to forgetting

PLMs, enabling them to learn new languages even with such limited data?

* RQ2: Deploying PLMs frequently encounters computational limitations. En-
dowed with more plasticity, can forgetting PLMs reduce adaptation time for such

low-compute scenarios?

* RQ3: New languages may be very similar or different from pretraining languages.
Does this similarity/difference impact the relative benefit of forgetting PLMs over
standard PLMs?
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5.5 Experiments

To evaluate the effectiveness of forgetting PLMs and address RQ1-RQ3, we conduct

experiments on several cross-lingual transfer benchmarks.

5.5.1 Experimental Setup

In our work, we closely follow the setup in Artetxe et al) [2020] and Marchisio et al.
[2023]. Our pretraining model is RoOBERTa-base, a standard 12-layer transformer-based
language model. We trained for each language a sentencepiece tokenizer [Kudo and
Richardson, 2018] with a vocabulary size of 50K over the corresponding data subsets
in CC100. The model was pretrained with the English subset of the CC-100 dataset.
The pretraining process consists of 125K updates, with a batch size of 2048. We used a
learning rate scheduler with linear decay and an initial learning rate of 7e — 4, with 10K
warm-up updates. Checkpoints were saved every 500 updates. Since longer pretraining
consistently led to better validation perplexities in our experiments, we chose the final
pretraining checkpoint (step 125K) whenever possible for optimal performance. Since
the final checkpoint might coincide token embeddings reset in forgetting pretraining, we
instead chose the closest checkpoint that has the best validation perplexity. This ensured
that we selected the best pretrained checkpoints for both approaches based on when they
achieved their optimal validation perplexities. We set the frequency of forgetting K =
1000 and used a clip-norm of 0.5.

During the language adapt stage, we kept most of the hyperparameters the same
as for pretraining. We finetuned the token embedding layer while keeping the others
frozen, as described in Section @ This differs from the pretraining setup, where all
parameters are learnable to maximize learning speed. In contrast, the finetuning setup
is intended to mimic how humans might typically relearn word meanings: by updating
embeddings while keeping the rest of the system fixed. Note that no forgetting happens
during this stage because we want the models to learn the new languages as well as
possible. In the stage, both models were finetuned for 10 epochs on the English
task data, specifically MultiNLI [Williams et al., 2018] for the NLI task and SQUAD
Rajpurkar et al. [2016] for the QA task. After the assemble stage, we evaluate the zero-

shot performance of the assembled model on XNLI [Conneau et al., 2018], a cross-
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Table 5.1: Accuracy comparison of forgetting and standard PLMs on the XNLI dataset
(table continues).

Method vi sW es bg de fr el ru

Standard 658 55.6 68.0 65.5 62.2 63.5 63.1 56.9
Forgetting 62.8 595 740 71.7 68.5 71.2 70.8 65.8

Gain(%) —-46 470 +88 +9.5 +10.1 +12.1 +12.2 +15.6

lingual NLI task, along with XQuAD [Artetxe et al., 2020] and MLQA [Lewis et all,
20204a], two cross-lingual QA tasks. We report the NLI accuracy and QA F1 on the test
sets.

Our experiments were implemented using fairseq [Ott et al., 2019]. The pretraining
and language adaptation experiments were conducted on 32 Tesla V100 GPUs (each with
32 GB memory) and took approximately 24-36 hours to complete. The time taken for
both stages were quite close to each other even though the latter only involved tuning the
embeddings. This demonstrates the importance of reducing the computational cost of
the language adaptation stage.

Differing from prior work [Artetxe et all, 2020, Marchisio et al., 2023], we focus on
language adapt in low-data regimes. We simulate low-resources scenarios by limiting the
adaptation data for each downstream language to only 5M subword tokens from CC100.
This is in contrast with conventional setups, where all the tokens in the corresponding
languages in CC100 are used for language adaptation. As Table shows, such setups
consume several orders of magnitude more data than our 5M-token setup; for instance,
the Swahili CC100 subset contains 345M tokens, roughly 69 times larger than our corpus,
and the Russian subset contains 34.9B tokens, roughly 6,980 times larger. Therefore,
PLMs that can successfully learn new languages with rich data under traditional setups

may struggle to do so with our limited 5M-token corpus.

5.5.2 RQ1: Forgetting PLMs Work Better in Low-Data Regimes

Standard PLMs struggle in low-data language adaptation, dropping from 86.1 English
NLI accuracy to just 53.3 average accuracy on XNLI with limited SM token adaptation
data. Compared to prior work which uses full data from Wikipedia [Artetxe et al., 2020]
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Table 5.2: Accuracy comparison of forgetting and standard PLMs on the XNLI dataset
(table continued). On average, forgetting achieve a 21.2% relative gain in accuracy

compared to standard across the languages tested, where averaged relative gain =
2 € {languages} Relative Gain of @

#Languages

Method zh ur hi tr ar th Avg en

Standard 53.2 36.8 39.7 38.9 41.2 35.3 53.3 86.1
Forgetting 63.5 45.8 529 52.7 59.5 59.7 62.7 85.1

Gain(%)  +19.4 +245 +33.2 +35.5 4444 +69.1 +21.2 -—1.2

Table 5.3: F1-score comparison of forgetting and standard PLMs on MLQA. On average,
forgetting PLMs achieve a 33.8% relative gain in F1 compared to standard PLMs across

€ {languages} Relative Gain of x

the languages tested, where averaged relative gain = *Languages

Method es vi de zh hi ar Avg en

Standard 494 38.3 45.3 34.1 17.7 20.8 34.3 789
Forgetting 55.3 45.0 53.4 43.0 28.8 347 434 783

Gain(%)  +12.0 +17.6 +17.8 +26.2 +4+62.5 +67.0 +33.8 —0.8

or from CC100 [Marchisio et al), 2023], the average accuracy on XNLI drops about 18%
(from 66.8/66.3 to 53.3). This indicates standard PLMs are not coping well with the low-
data regime. In contrast, forgetting PLMs achieve decent 62.7 average XNLI accuracy,
a +21.2% relative gain over standard PLMs, as shown in Table .

Forgetting PLMs also outperform standard PLMs on MLQA and XQuAD, with aver-
age F1 relative gains of 4+-33.8% and +60.9% across languages, as respectively demon-
strated in Table @, Table @ and Table @ Across NLI and QA tasks, forgetting PLMs
consistently surpass standard PLMs in low-data regimes. Why do forgetting PLMs han-
dle the low-data regime better? We hypothesize this is because forgetting PLMs are more
robust to different embedding initialisations. They encode more universal knowledge in
the transformer body. Standard PLMs may encode more “shortcut” knowledge relying
on certain embedding initialisations. In low data, standard PLMs cannot adjust embed-
dings towards shortcut routes without access to enough data. Forgetting PLMs do not

rely on shortcuts so perform better.
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Table 5.4: Fl-score comparison of forgetting and standard PLMs on XQuAD (table
continues). On average, forgetting PLMs achieve a 60.9% relative gain in F1 com-

pared to standard PLMs across the languages tested, where averaged relative gain
Zze{lmguages} Relative Gain of x

#Languages

Method vi es ru de el zh

Standard 49.7 S7.7 49.4 50.9 48.5 324
Forgetting  52.9 64.6 56.5 60.9 59.9 43.7

Gain(%) +6.4 +12.0 +14.5 +19.7 +23.6 +34.6

Table 5.5: Fl-score comparison of forgetting and standard PLMs on XQuAD (table
continued). On average, forgetting PLMs achieve a 60.9% relative gain in F1 com-
pared to standard PLMs across the languages tested, where averaged relative gain

. Zwe{languages} Relative Gain of x

#Languages

Method hi ar th tr Avg

Standard 214 22.2 15.4 13.0 36.1
Forgetting 33.3 38.7 384 414 49.0

Gain(%)  +55.8 +74.2 +149.7 +218.8 +60.9

5.5.3 RQ2: Rewiring Forgetting PLMs Requires Fewer Updates

We are also interested in how quickly forgetting PLMs and standard PLMs can learn new
languages. Figure summarizes adaptation curves on XNLI, MLQA and XQuAD,
with each point representing the averaged performance across all languages. In just 5K
steps (4% of full adaptation), forgetting PLMs reach 57.8 accuracy on XNLI while stan-
dard PLMs struggle at random guessing levels of 37.2. Similar trends hold for MLQA
and XQuAD. After 5K steps, forgetting PLMs achieve 92% of their full performance on
XQuAD versus just 53% for standard PLMs (see the last plot in Figure @).

Why do forgetting PLMs converge faster? We hypothesize it is because periodical
embedding resetting forces the body to gradually locate itself on a particular manifold,
where it can easily cooperate with new embeddings. This makes the body encourage

larger embedding updates when adapting to new languages. Active forgetting simulates
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Figure 5.5: Adaptation curves on XNLI, MLQA, and XQuAD. Numbers aggregated
across languages. The first row contains the full adaptation curves, which comprises
125K adaptation steps. The second row contains the zoom-in versions of curves for the
first 5K adaptation steps. Forgetting PLMs converge faster than standard PLMs; for in-
stance, on XQuAD (the last plot), forgetting PLMs reach 92% of their final performance
within 5K updates, while standard PLMs only reached 53% of their final performance at
that point.
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Figure 5.6: Relative gains of forgetting PLMs over standard PLMs across languages for
XNLI. Forgetting yields substantial relative gains for languages like Arabic, Hindi, Thai,
Turkish, and Urdu.

language switching during pretlrainingB introducing diversity without new data. This

allows faster adaptation to real new languages.

5.5.4 RQ3: Distant Languages Benefit From Forgetting PL.Ms

We have primarily focused on discussing the averaged performance in the previous sec-

tions (Sec ij and |5.5.3|). In this section, we provide a more detailed comparison of

language-specific performances between forgetting PLMs and standard PLMs on XNLI,
MLQA, and XQuAD. To gain a deeper insight into which languages benefit the most
from the use of forgetting, we present the relative performance changes across the lan-
guages in Figure @ for XNLI and in Figure @ for MLQA. For space reason, the results
of XQuAD can be found in Figure in the appendix.

Across the spectrum of languages (Table ), we observe that forgetting provides
greater benefits for languages distant to the pretraining language (English) in terms

of language family, script and morphology. Specifically, forgetting brings large rela-

ZPrecisely, it simulates vocabulary swappings, causing drastic changes to the input of the body.
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Figure 5.7: Relative gains of forgetting over standard across languages for MLQA. For
languages closely related to English, such as German, the relative gains from forgetting
are modest.

tive gains for languages such as Arabic, Hindi, Thai, Turkish, and Urdu compared to
closer languages like German. Script seems important - forgetting helps Vietnamese and
Swabhili less despite their distance from English, likely due to the shared Latin script.

Languages that share a script with the pretraining language (e.g., English and Ger-
man) tend to share subword tokens, enabling models to reuse learned embeddings and
lexical patterns. This facilitates transfer and reduces the need to relearn low-level repre-
sentations. In contrast, languages with different scripts (e.g., Arabic, Hindi, Thai) have
minimal subword overlap and lack orthographic familiarity, making tokenization and
representation learning more difficult. Script similarity, therefore, narrows the represen-
tational gap in cross-lingual transfer. Forgetting is more beneficial for script-divergent
languages, as it enables the model to construct new, script-specific representations with-
out interference from English.

Examining adaptation curves within the first 5K steps, forgetting PLMs reach sub-
stantially superior performance over standard PLMs for almost all languages except
Urdu, while standard PLMs struggle at random guess levels (see Figure @ and Section
). This demonstrates forgetting PLMs’ ability to efficiently adapt to new languages,
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Figure 5.8: Adaptation curves on XNLI within 5K updates for individual languages:
Bulgaria, Greek, Spanish, French, Russian, Swabhili, Vietnamese and Chinese. For all
languages except Urdu, the forgetting PLMs converge faster than the standard PLMs
during the language adaptation stage.

particularly dissimilar ones, in low-data settings.

5.6 Discussion

Summary This chapter expands on the idea of active forgetting, a manifestation of
the destructuring principle, and its potential impact on Al models. While Chapter @]
demonstrated the value of active forgetting in the structured paradigm for building gen-
eral knowledge engines, this chapter applies it to unstructured paradigms, showing that
active forgetting can improve pretrained language models by imbuing them with more
linguistic plasticity. Experiments with RoOBERTa show that models pretrained via active
forgetting can better learn from small data while enjoying faster convergence during
language adaptation, particularly for languages that are distant from English.

Most current efforts to build knowledge engines in the unstructured paradigm have

been focusing on ingesting more data into larger models [Kaplan et al., 2020]. Accel-
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erating techniques on both hardware and software sides are being developed to help us
achieve such structuring of the reality (whether real or synthetic) into machine compu-
tation. On the other side, we as a community seem to have far fewer ideas on how we
can rewire inappropriate structures from the models safely, timely, and relevantly [Wei-
dinger et al., 2021}, 2022, Kirk et al., 2024]. This chapter stands at the crossroad of struc-
turing and destructuring, where we highlight the necessity of destructuring in its role for
“machine plasticity” — a kind of freedom to delete built-in structures and rewire model
behavior whenever needed. We speculate that destructuring may reduce the model’s re-
liance on shortcut learning, where models depend on superficial cues rather than deeper
structure [Geirhos et alj, 2020]. By disrupting these shortcuts, destructuring could en-
courage the model to focus on more abstract patterns, potentially improving its ability to
generalize to new environments.

The conclusion of this chapter, a dual focus on structuring and destructing, is sur-
prising while providing a promising alternative to the scaling approach [Kaplan et all,
2020]. Destructuring can drive model evolution and rewire models to adapt to the dy-
namic world. Without this capacity for machine plasticity, we risk creating rigid Al
systems that potentially trap their human users in outdated or biased “knowledge”. A
balance between structuring and destructuring opens the door to create more natural and
flexible knowledge engines, ultimately supporting diverse Al applications that blend into

our everyday life.

Implications Going beyond language adaptation, we argue that pretrained language
models with more plasticity are a promising direction for future research, as they allow
easier adaptation to various tasks, domains, languages and can evolve faster as the real
world changes. Unlike symbolic methods, such as knowledge graphs, which can easily
rewire a fact by modifying the corresponding knowledge triplet, current static PLMs are
harder to rewire since changing one fact by updating model weights may disrupt multiple
other facts without substantial post-hoc intervention. Improving the rewirability via for-
getting pretraining thus can be seen as one way of imbuing PLMs with similar benefits
as symbolic methods (making the resulted model more controllable i.e. can be modified
with tiny cost), complementing the line of post-hoc model editing research [Mitchell
et al), 2021, 2022].
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Limitations This chapter uses one of the simplest forgetting approach - directly re-
setting embeddings to random initialisation. Advanced techniques like gradually inject-
ing noise could be explored. We focus on masked language modelling pretraining with
language-specific tokenizers. Applying active forgetting to autoregressive LMs, other
pretraining methods (e.g. DeBerta pretraining [He et all, 2021b,a]), and various tok-
enization strategies is promising future work. More broadly, current large language mod-
els need more plasticity to expand across tools, tasks, and domains. Our work takes an
initial step, showing that directly resetting embeddings can significantly improve model
plasticity. Further research on more sophisticated forgetting techniques during pretrain-
ing could unlock additional gains.

On the theory front, potential connections can be made between forgetting and meta-
learning [Schaul and Schmidhuber, 2010, Thrun and Pratt, 2012, Andrychowicz et all,
2016, Finn et al., 2017] since both attempt to learn solutions that can quickly adapt them-
selves to new inputs. Another possible theoretical explanation for why active forgetting
works so well might be related to the flatness of the solution in the loss landscape [Al-
abdulmohsin et al.,, 2021]]. Flatter minima tend to enjoy better generalization [Liu et alJ,
2023b]. Thus, it might be worthwhile to study the flatness of the transformer body during
the forgetting pretraining.

Beyond methodology, it would be valuable to more deeply investigate how this pe-
riodic resetting of embeddings affects the internal dynamics of the Transformer archi-
tecture itself. For instance, how does the reset influence attention patterns, layer acti-
vations, or representational drift across training epochs? Such analysis could shed light
on whether active forgetting encourages more modular or adaptive representations. Ad-
ditionally, while this work focuses on input embeddings, the same principle could be
extended to other components such as attention heads or feedforward layers to improve

plasticity further.

128



Summary of Destructure

Explicitly or implicitly, both structured and unstructured Al paradigms rely on structures
to represent knowledge succinctly and effectively, as shown in Part m: Structure. How-
ever, a shared challenge for both paradigms lies in the fact that structures can be overly
rigid when faced with unseen environments. What were once the foundation for efficient
and consistent reasoning may turn into an outdated lens, distorting the model’s ability
to perceive beyond the familiar and adapt to novel scenarios — what we call model plas-
ticity. Part @: Destructure addresses this shared challenge by integrating destructuring
techniques into training. Experiments in both the structured paradigm and unstructured
paradigm show this method helps models adapt to new knowledge graphs and languages.

We begin by examining how structures are carved into models (Chapter @). The
embedding layer, often overlooked in modern models for knowledge engines, is nev-
ertheless key to understanding this process. Rather than viewing embeddings as a set
of isolated vectors, we unfold their gradient decent traces and interpret these traces as
message-passing between corresponding symbols. Similar to graph neural networks, the
message-passing propagates information along “edges”, which can be triples in knowl-
edge graphs or sentences in text corpora.

This reinterpretation explains transductiveness, or why models wrapped by embed-
dings on both ends fail with unfamiliar inputs. During long training horizons, embed-
dings, as repositories of all message-passing computation, store excessive global struc-
tural information about the training symbols; the non-embedding model body ends up
maintaining contextual knowledge to be triggered by specific known embeddings. While
excessive global information benefits transductive tasks — where all symbols are known
— it leaves non-embedding model body ill-equipped to handle unseen symbols. Models
thus fail for inductive scenarios, where new symbols lack embedding values that can

trigger the body’s knowledge accordingly.
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Figure 5.9: The active forgetting mechanism periodically resets the embedding layer
during training. Pink curve illustrates the loss changes. Whenever forgetting happens,
the loss curve spikes and then recovers to a normal downward trend.

To address this, we propose to introduce destructuring techniques into standard train-
ing. Specifically, the active forgetting mechanism, resets the embedding learning peri-
odically while keeping the rest of the model training intact. This technique allows the
model body to learn to regrow embeddings from scratch after each embedding resetting.
The new training procedure derives a bi-level learning system: a fast inner loop for re-
growing embeddings and a slow outer loop for learning a robust, stable body. Regular
destructuring of embeddings forces the body to “re-view” the data with a pair of fresh
eyes,E in a more abstract way that does not pertain to embedding value nuances but fo-
cus more on relationships between symbols. Empirical studies on inductive inference
over graphs and languages demonstrate that this mechanism improves generalization to
unseen symbols, such as new entities in knowledge graphs (Chapter @) and new tokens
from an unfamiliar language (Chapter ).

The beauty of reality lies in its potential infiniteness.d On one hand, to simplify
and understand reality with limited cognitive resources, human brains sketch it with
conceptual structures. On the other hand, the human brain’s neuroplasticity allows us to

revise outdated conceptual structures. Balancing between structuring and destructuring

3In non-scientific texts, studying the old with a pair of new lenses is sometimes known as Onkochishin.
Embeddings in a transformer or a factorization based models can be thought of as the “lens/eyes” for the
non-embedding model body.

4The future is unknown but never affects its beauty.
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Figure 5.10: The reality is always changing. We use different shapes to indicate the
observed structures of reality. These structures change as time flows. To faithfully cap-
ture reality, the knowledge engine, no matter in the structured paradigm or unstructured
paradigm, must be capable of balancing the force of structuring with the force of de-
structuring so that it captures necessary structures but also does not get trapped by these
structures.

leads to the plasticity crucial for surviving, navigating, and thriving in a dynamic reality.

Similarly, when building knowledge engines, the first attempt is to model reality
comprehensively with computational structures. These structures are reusable across ap-
plications, providing knowledge efficiently without the need to recompute things from
scratch. They model the known aspects of the reality quite well. However, we must rec-
ognize that such structures can become inaccurate as reality continually evolves. There-
fore, it is crucial for knowledge engines to possess the ability to delete outdated structures
and relearn new ones. In other words, they must be equipped to handle the unknown di-
mensions of reality. Destructuring, in this context, provides knowledge engines with
the capacity to discard rigid frameworks and free up resources to address new environ-
ments. This capability helps model the unknown more effectively by accommodating
randomness and avoiding excessive reliance on past solutions.

Following this line of thought, Part @: Destructure examines the counterforce to

Part m: Structure. This section emphasizes the potential of destructuring through active
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forgetting as a mechanism to enhance model plasticity. By incorporating this approach,
we can develop resilient and robust knowledge engines that evolve alongside the ever-
changing world. This approach opens exciting questions for future research, such as
whether components beyond embeddings should be subject to forgetting and which tasks

might further benefit from active forgetting.
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Chapter 6
Conclusions and Critical Reflections

We have now arrived at the closing part, where we will summarize this thesis and discuss
its limitations, significance, and potential future directions. This chapter will present
the main conclusions of this thesis along with critical and systematic reflections on the

limitations of the thesis.

6.1 Conclusions and Contributions

While intelligence has long been a quest for human beings, we now stand at a critical
point in time. We are experiencing an intelligence revolution, where in the envisioned fu-
ture, intelligence can be packed into units that can be disseminated easily across time and
space, akin to how Industrial Revolution packs our physical capabilities into units. In this
revolution, knowledge plays a crucial role as it serves as the interface between our cog-
nition and the reality. An accurate knowledge interface allows intelligent agents to con-
ceptualize and model the reality effectively (even though it remains uncertain if humans
experience the reality directly). The knowledge of actions and their consequences fur-
ther allows the intelligent agents to intervene and transform their environments. Hence,
building knowledge engines are essential to both natural and artificial intelligence.
There are two conventional paradigms to constructing knowledge engines: the struc-
tured and unstructured paradigm, exemplified respectively by knowledge graphs and
large language models. Which one is better? This thesis aims to discuss this age-old

debate in the context of recent findings in knowledge graphs and language models. We
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argue that the presence of structures is inevitable regardless of whether data is explic-
itly structured (as in knowledge graphs) or implicitly structured (as in large language
models). Furthermore, we assert that not all structures are of positive roles. If focusing
narrowly on structure formation, we can make models that are overly rigid. Thus, we
motivate the necessity of destructuring, which improves models’ plasticity so that they
can learn rapidly with few examples in new environments.

In summary, this thesis presents a scientific journey to discover the commonalities
between the two mainstream paradigms for building knowledge engines. Although these
paradigms initially appear distinct, often perceived as separate approaches, this thesis
demonstrates that deeper connections can be established through a functional examina-
tion of model training dynamics and analytical reformulation of model computations.
The contributions of this thesis are fourfold as detailed below:

First, the thesis identifies new connections between the two seemingly disjoint paradigms
as summarized in Table :

* The language modelling objective induces latent structures within model compu-
tations, supporting tasks such as knowledge base completion and the interpretation

of large language models.

» Active forgetting enables inductive reasoning in both paradigms, facilitating effi-
cient generalization to unseen entities in knowledge graphs and new languages in

pretrained language models.

Second, we provide new insights into the role of structures in building general knowl-

edge engines:

* Structures are indispensable for knowledge engines, though they can manifest in
various forms —explicit in data or implicit within models. The structured paradigm
explicitly specifies the structures in the data. For the unstructured paradigms, la-
tent structures about the relationships among tokens can be directly extracted from

model computations post-training (Chapter H).

* However, overly encoding structures within models can hinder their ability to gen-
eralize to unseen scenarios, highlighting the importance of balancing structures
and flexibility (Chapter ).
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Table 6.1: Comparison of the structured and unstructured paradigm through the dual

forces of structure and destructure.

Force Structured Paradigm Unstructured Paradigm

Structure Language modelling objectives induce Language modelling objectives induce
strug:ture into factorization models (Chap- structure into Transformers (Chapter E )
ter )

Destructure Active forgetting enhances generalization
to unseen graphs ( Cha]merg‘)g

Active forgetting enhances generalization
to unseen languages (Chapter B )

Third, we obtain new understandings about the embedding layer, the often-overlooked

components in both paradigms:

* The concept of the embedding sandwich emerges as a suitable architectural ab-

straction for models in both the structured and unstructured paradigm, e.g. trans-

formers (Chapter @ and Chapter ).

* Embeddings should not be examined in isolation but rather in conjunction with

their optimization dynamics. They serve as dynamic repositories where gradient

descent accumulates, propagates, and stores symbolic interactions. (Chapter E]).

Finally, our findings advocate for a shift in focus from the surface-level distinctions

of structured versus unstructured data to the underlying dynamics of structure formation

and destructuring as indicated by Table :

* Rather than focusing solely on whether data is structured or unstructured, es-

pecially given modern datasets often contain data exhibiting varying degrees of

structures, we highlight the need to study both the forces driving structure forma-

tion (Part m) and their opposing force, destructuring (Part @).

* Structuring promotes structure encoding in the models. Destructuring mitigates

the rigidity of excessive structuring, enabling Al systems to adapt and reason ef-

fectively in dynamic, unseen environments—an ability we term model plasticity.

In conclusion, this thesis highlights that structure formation and its dual force, de-

structuring, are both essential components for building general knowledge engines.

136



Table 6.2: The unified paradigm seen through the mechanistic forces of structure and
destructure.

Force The (Un)Structured Paradigm
Structure Language modelling induces structure in model computation
(Part |}

Destructure Active forgetting helps address unseen symbols and adapt to new environments

(Part B)

6.2 Limitations and Flaws

While this thesis provides new insights into the bridging of structured and unstructured
learning, the thesis contains several limitations and flaws in its current form. While
individual chapters already provide discussion on their own limitation, this section ac-
knowledges global limitations related to the topic of structured and unstructured learning

so that the readers can have a rigorous assessment of the thesis.

6.2.1 Theoretical Scope

We discussed several key constructs and concepts used in our thesis, where broader no-

tions of them are combed through.

Structure

The core concept in this thesis is structure. In the traditional discussion of structured and
unstructured learning, the concept of structure mainly centres around the structures in
the data. This thesis takes a step further to discuss the relationship between the structures
in the data and the structures in the computational model: language modelling objective
can induce the former into the latter; the latter can in turn be recovered to the former by
rearranging model computation. In this sense, the thesis considers primarily structures
in the context of relational learning and language modelling.

However, structures have other broader notions which the thesis could have engaged

with. We enumerate a number of them to better contextualize our notion of structures.
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First, structures are the obsession object for philosophers, psychologist, educators
who strive to understand human minds. In this context, structures typically refer to men-
tal or cognitive structures, with knowledge being perhaps one of the most important of
these structures. We review several famous notions of structures under this category.
As early as 1781, Kant discussed how the mind structures experience and how such
abstractions form the basis for humans to understand the world [Kant, (1781]. Clinical
methods were used to study how these cognitive structures form in children by Piaget
in 1920s [Piaget, 1929]. Using controlled observations, Vygotsky further highlighted
the mental structures are highly impacted by external factors such as language and cul-
ture [Vygotsky, 1934]. Bruner examined the role of mental structures in the learning
process and showed how abstract thinking is necessary to organize new experiences and
knowledge [Bruner, 1960]. More recently, Deleuze further argued that mental struc-
tures are not static but dynamic and emergent in his masterwork, Difference and Repeti-
tion [Deleuze and Patton, 1994]. This thesis can be seen as an effort towards implement-
ing such a dynamic notion of mental structures in Al systems (in fact, to a certain extent,
one can see our destructure process as Deleuze’s difference process and our structure for-
mation as Deleuze’s repetition process), while more understandings into the difference
and repetition processes are required to fully realize the flexible structures described by
Deleuze.

Secondly, in programming, structures often mean data structures, the abstract mod-
els for organizing and storing data [Knuth, 1997]. In this case, structures refer to an
abstraction where the physical implementation is often hidden, and developers interact
with abstract representations of the data. In our thesis, the “structure” in the structured
and unstructured paradigm refer to the structures in the training data. Specifically, in the
case of structured paradigm, the structures are relational structures formatted in subject-
relation-object triples [Ji et al), 2020]; in the unstructured paradigm, the texts are without
such formatting, e.g. the first few tokens are not necessarily the subject rather they can
play various grammar roles depending on the contexts.

Thridly, structures in mathematics, such as sets, groups, and graphs, are abstractions
that represent relationships [Dummit et al), 2004, Hausdorft, 2021, Deisenroth et all,
2020]. These mathematical constructs are essential in modelling relationships and com-
plex systems. In the structured paradigm, knowledge bases can be represented using

graphs, known as knowledge graphs. The graph representation of knowledge bases en-
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able easy visualization, comprehension, and efficient querying, reasoning [Noy et al.,
2019, i et al., 2020]

Finally, structures have ample notions in machine learning. Most of these notions ex-
plcitly incorporate structures into learning and learnt structures are used to help reason-
ing. We discuss a couple of works with such explicit structure integration. In Bayesian
learning, structures manifest as Bayesian networks, which are probabilistic graphical
models consisting of variables and their conditional dependencies expressed by a di-
rected acyclic graph [Neal, 2012]. Compared to the usual neural networks, Bayesian
networks can be used for prediction with uncertainty. Similarly, in causal inference,
structures often refer to causal graphs or structural causal models (SCMs) [Pearl, 1998].
These causal models describe causal relationships between variables, distinguishing cau-
sation from correlation [Pearl and Shafer, 1995, Pearl and Mackenzie, 2018]. Another
branch of work, neuro-symbolic Al [Besold et all, 2021]], integrates symbolic structures
with neural networks. Since neural networks excel at pattern recognition and symbolic
reasoning excels at abstract concepts and logic rules, neuro-symbolic Al aims to com-
bine their strengths [Garcez et al., 2019]. In this domain, structures often refer to knowl-
edge representations such as knowledge graphs and logic rules [Hamilton et al., 2024,
Colelough and Regli, 2024]]. Thus, the knowledge graphs based learning methods in this
thesis can apply to some neuro-symbolic Al systems while more research are needed to
extend the methods to complicated structures like logic rules. For example, it would be
interesting to explore how active forgetting (Part @) could help models adapt logic rule
templates by flexibly substituting different entities (i.e., performing variable instantia-
tions) depending on the task. This could make reasoning systems more adaptable and
task-specific.

All the above notions of structures are also meaningful structural objects to extend
our methods with. A more comprehensive treatment of the broader notions of struc-
tures would require integrating toolkits from causal machine learning, general Bayesian

learning, and neuro-symbolic Al.

Destructure

The concept of destructure introduced in this thesis, with active forgetting as one po-

tential implementation, is not without limitations. While active forgetting specifically
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targets the embeddings, actively removing the structures captured in them, other com-
ponents of the model could also be considered for forgetting. However, we have chosen
embeddings as the primary target for this process, leaving other model components un-
explored. One key limitation is the lack of automatic selection for which component
should undergo forgetting during the pretraining process. Although it would be more
convenient for users if such a mechanism were automated, this would add significant
overhead to an already computationally expensive pretraining phase. Additionally, the
idea of automating the schedule of forgetting frequency rather than treating it as a hyper-
parameter introduces further complexity that may increase the computational burden.

It is also worthwhile to compare with techniques such as dropout [Baldi and Sad-
owski, 2013, Srivastava et al, 2014] and iterative pruning [Frankle and Carbin, 2019].
These methods periodically erase weights, providing regularization and helping to pre-
vent overfitting. However, they are not designed to specifically address generalization to
unseen environments, which is a key goal of our proposed destructuring method. The-
oretically, active forgetting and similar techniques could be linked to frameworks like
Invariant Risk Minimization (IRM) [AArjovsky et al., 2019], which aims to reduce risks
across different environments and improve generalization to unseen data points. How-
ever, further investigation is required to fully establish this connection.

Another limitation arises from the lack of study on one-time destructuring meth-
ods, which focus on removing unwanted structures in the models, directly patching
problematic model behaviors. These methods, such as DPR [Karpukhin et al., 2020],
RAG [Lewis et al}, 2020b], model editing [Meng et al/, 2022], and model unlearning [Liu
et ali, 2025], address specific issues like hallucinations or toxicity in LLM generations.
However, they lack the ability to systematically and globally address these issues across
the model in an integrated way. Instead, they rely on external interventions, which may
not lead to the same depth of control over the model’s learning and forgetting processes
as the proposed approaches in this thesis. That said, these external methods are reactive

and easy to deploy on-the-fly.

6.2.2 Methodological Constraints

While this thesis attempts to bridge structured and unstructured learning paradigms, it

centres on the embedding and its role in caching symbolic relationships. The unifi-
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cation is limited to reframing neural embedding optimization as structural operations
(message-passing over graphs). This unification is implicit rather than explicit. The
alternative direction can be to estabish a mathematically rigorous framework or an em-
pirical system that directly mixes both structured and unstructured inputs synthesizing
neural networks and symbolic reasoning [Colelough and Regli, 2024]. For example, di-
rectly injecting structured data into the unstructured paradigm, making language models
structure-aware [Li et all, 2023, Wu et al., 2024].

6.2.3 Evaluation, Scalability, and Computation Efficiency

In the destructuring experiments presented in Part @, we focused on evaluating the model’s
performance on unseen entities in knowledge graphs and unseen languages for pretrained
language models. However, in real-world applications, there are many other potentially
unseen scenarios that need to be considered. For pretrained language models, there exists
a wide spectrum of linguistic shifts to which the model must adapt. These shifts include
domain shifts [Gururangan et al., 2020], temporal evolution [Liska et al., 2022], task/-
tool changes [Lu et al., 2024], and personalization for different users [Kirk et al., 2024].
All of these factors are important to test when applying active forgetting techniques to
ensure that they are effective across a variety of scenarios.

Although latent structures in large language models were analysed in Chapter H ex-
tracting transparent higher-order n-grams remains a partially unsolved challenge. This
issue requires further scaling up of our methods to handle more complex structures.
Similarly, the analysis of computational paths can be extended to explore the cascading
effects across multiple self-attention modules, a task that demands increased computa-
tional resources. We focused on extracting n-grams for a selected set of large language
models. To gain a deeper understanding of more models and their internal knowledge,
we must systematically examine a broader range of models. This would include poten-
tially verifying the extracted structures against data distributions or real-world knowledge
graphs to validate the models’ generalization capabilities and alignment with external

knowledge.
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6.3 Significance and Implications

This thesis carries several important implications that extend beyond its theoretical con-
tributions, shedding light on practical applications for both artificial and human cognitive

systems.

6.3.1 Applications for Machine Minds

By bridging the structured and unstructured paradigms, this work enables cross-paradigm
learning, allowing us to borrow strengths from both approaches.

One key application lies in improving the controllability of large language mod-
els (LLMs). For instance, by training models on relevant n-gram paths identified through
our method in Chapter @, we might be able to enhance their functional flexibility. This
can be particularly useful in managing tooling plasticity [Lu et al}, 2024|], where tools
can be interpreted as “neural circuits” that activate only under specific conditions. By
identifying model paths related to particular tool usages, we could apply active forget-
ting from Chapter [J to adjust or reset those paths as needed. Additionally, this work
offers pathways to improve the interpretability and transparency of LLMs. As shown in
Chapter @, our n-gram interpretability requires only CPU-based post-training process-
ing and no curated external datasets, making it more computationally efficient than other
approaches. This method allows institutional actors to systematically audit LLMs, en-

hancing transparency and user trust in generative Al applications.

6.3.2 Applications for Human Minds

This thesis also implies a broader scientific inquiry into how humans build knowledge
engines in their minds.

First, the research on embeddings and their function as “memory banks” during train-
ing (Chapter E]) provides insights into how human memory might work and be regu-
lated, potentially linking to engram cells in neuroscience [[Tonegawa et al., 2015, 2018,
Ryan and Frankland, 2022, Guskjolen and Cembrowski, 2023]. Second, active forgetting
techniques that help pretrained language models generalize to new languages with less

data (Chapter ) could inspire new research in language acquisition. This is especially
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relevant to studying phenomena such as the critical period for language learning [Con-
stantinescu et all, 2024]]. Third, this thesis highlights potential applications for digital
intervention. Many recommender systems and social media platforms maintain persis-
tent embeddings for individual users. While these technologies have become integral
to daily life, they often accumulate implicit user preferences in embeddings, leading to
issues like “brain rot” addiction and echo chamber. If platforms periodically reset user
embeddings, we might be able to mitigate digital addiction, and promote healthier online

interactions.
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Chapter 7
Looking Forward

This thesis opens several promising avenues for future research and applications:

7.1 Future Directions

Theoretically, this thesis emphasizes the central role of factorization — a form of com-
putation decomposition — in learning structures (Chapter 2 and Chapter @). A promis-
ing direction for future research is studying a unified framework for understanding the
widespread presence of factorization in handling discrete symbolic interactions. This
includes models such as word2vec, tensor factorization, RNNs, and Transformers. Po-
tentially transformers themselves can be interpreted as bi-level factorization models, of-
fering new perspectives on their internal computations.

Alongside theoretical exploration, I am interested in applying these findings for Al
transparency and safety. First, how can we use the identified n-gram paths (Chapter @)
to exert structural control over the behaviour of large language models? For example,
conducting invariant learning over selected paths [Arjovsky et al., 2019] could help fix
unwanted structures that cause biases or undesirable outcomes. Second, we can extend
research such as [Chen et al., 2024] by systematically extracting interpretable structures
from various LLLMs, advancing transparency and trust in this rapidly evolving field.
Third, we can apply the active forgetting techniques proposed in this thesis (Part @)
to preserve low-resource languages such as Hokkien, supporting decentralized knowl-

edge management systems that could benefit from decoupling embeddings from model
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bodies Zhao et al. [2024b], [acob et al| [2024]. This approach could also enhance epi-
tope link prediction tasks where limited data complicates generalization across epitope
groups [Liu et all, 2024a].

These future directions lie in the intersection between theoretical advances and prac-
tical implementations, contributing to both the foundational understanding of AI models

and their real-world applications in transparent, safe, and inclusive systems.

7.2 Final Thoughts

The equation for building general knowledge engines likely transcends the simplistic
notion of structured + unstructured = intelligence or scaling both of them. Structured
and unstructured representations are merely two states of the engine. They are not the
driving forces behind intelligent behaviour.

A more accurate formulation may be:
Structuring < Destructuring = Intelligence

where intelligence emerges from balancing the dual forces while maintaining fluidity.
Structuring accumulates knowledge by organizing meaningful relations into reusable
forms, while destructuring mitigates rigid, outdated, and potentially harmful structures,
enabling continuous learning and adaptation in ever-changing reality.

Scaling may indeed be a pathway toward Artificial General Intelligence (AGI v1),
as digesting vast amounts of data naturally leads to learning more and more complex
structures about our world. However, achieving Artificial Good Intelligence (AGI v2)
requires more than just scaling. It demands plasticity — the ability to discard outdated
knowledge structures, regrow new ones, and adapt effectively to new environments. In
this view, balancing structuring and destructuring becomes a key hallmark of a truly

intelligent system, capable of evolving with the ever-changing realities.
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Appendix A

Relation Prediction

Here we provide additional technical details and results for Chapter B Language Mod-

elling Completes Knowledge Graph Structures.

A.1 Technical Details

A.1.1 Code Snippets of Relation Prediction

Figure demonstrates how to add relation prediction to the existing implementation
of ComplEx, which transform the existing 1vsAll objective into a language modeling

objective.

A.1.2 Hyperparameters

Tesla P100 and Tesla V100 GPUs were used to run the experiments. We implemented
each model by PyTorch. Our codebase is based on Our codebase is based on this repos-

itory.

Relation Prediction Hyperparameter Ranges Across Datasets

Kinship, Nations, and UMLS For all small datasets (Kinship, Nations, UMLS), we
trained RESCAL, ComplEx, CP and TuckER with Adagrad optimiser and N3 regulari-
sation for at most 400 epochs. Reciprocal triples were included since they are reported to

be helpful [Dettmers et all, 2018, Lacroix et al., 2018]. We performed grid searches over
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1 class ComplEx(KBCModel) :

2 def __init__ (self, sizes, rank, init size):

3 super(ComplEx, self)._init_ ()

4 self.sizes = sizes

5 self.rank = rank

6

7 self.embeddings = nn.ModuleList([

8 nn.Embedding(s, 2 * rank, sparse=False)

9 for s in sizes[:2]

10 1)

11 self.embeddings[@].weight.data *= init size

12 self.embeddings[1].weight.data *= init size

13

14 def forward(self, x, score rhs=True, score rel=False, score lhs=False, normalize rel=False):
15 lhs = self.embeddings[@](x[:, @])

16 rel = self.embeddings[1](x[:, 1])

17 rhs = self.embeddings[@](x[:, 2])

18

19 lhs = lhs[:, :self.rank], lhs[:, self.rank:]

20 rel = rel[:, :self.rank], rel[:, self.rank:]

21 rhs = rhs[:, :self.rank], rhs[:, self.rank:]

22

23 rhs_scores, rel_scores = None, None

24 if score rhs:

25 to_score _entity = self.embeddings[@].weight

26 to_score entity = to_score entity[:, :self.rank], to score entity[:, self.rank:]
27 rhs scores = |

28 (lths[e] * rel[e] - lhs[1] * rel[1]) @ to_score entity[@].transpose(@, 1) +
29 (lhs[@] * rel[1] + lhs[1] * rel[@]) @ to score entity[l].transpose(@, 1)
30 )

=i 1t score_rel:

32 to_score rel = self.embeddings[1].weight

33 to_score rel = to score rel[:, :self.rank], to score rel[:, self.rank:]

34 rel scores = |

35 (lhs[e] * rhs[@] + lhs[1] * rhs[1]) @ to score rel[@].transpose(®, 1) +
36 (lhs[@] * rhs[1] - lhs[1] * rhs[@]) @ to score rel[l].transpose(®, 1)
37 )

38 if score lhs:

39 to_score lhs = self.embeddings[@].weight

40 to_score lhs = to score lhs[:, :self.rank], to score lhs[:, self.rank:]

41 lhs_scores = (

42 (rel[e] * rhs[@] + rel[1] * rhs[1]) @ to_score lhs[@].transpose(®, 1) +
43 (rel[e] * rhs[1] - rel[1] * rhs[@]) @ to _score lhs[1].transpose(®, 1)
44 )

Figure A.1: Relation Prediction for ComplEX, the red region shows the lines related to
using relation prediction as an auxiliary training task.
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Table A.1: Hyperparameter search space for different KBC models on small datasets
(Kinship, Nations, UMLS). d is embedding size, d, is relation embedding size, Ir is
learning rate, bsz is batch size, and reg is regularization.

Model dor (d,d,) Ir bsz reg
RESCAL 50, 100, 200 le—1, 10, 50, 100, 0, b5e—3, 1le—2,
le—2 500 be—2, le—1, be—1
ComplEx 100, 200, 500, 1000 le—1, 10, 50, 100, 0, 5e—3, 1le—2,
le—2 500 5e—2, le—1, be—1
CP 200, 400, 1000, 2000 1e—1, 10, 50, 100, 0, 5e—3, 1le—2,
le—2 500 Se—2, le—1, be—1
TuckER (100, 25), (200, 25), le—1, 10, 50, 100, 0, b5e—3, le—2,
(100, 50)’ (200’ 50), le—2 500 56—2, 16—1, 5e—1

(100, 100), (200, 100)

hyperparameter combinations and chose the best configuration for each dataset based on
validation MRR. We list the grids of hyperparameter search in Table and report the
best configuration in Table @ As for balancing between relation prediction and entity

prediction, we searched the weight of relation prediction A over {4,2,0.5,0.25,0.125}.

WNI18RR, FB15k-237, and Aristo-v4 For all datasets, we trained ComplEx with an
N3 regulariser and Adagrad optimiser for at most 400 epochs. Reciprocal triples were
included since they are reported to be helpful [Dettmers et al., 2018, Lacroix et all,
2018]. As for the weight of relation prediction, we searched over different zones for
different datasets. For WN18RR, we searched the weight of relation prediction over
{5e—3,1e—3,5e—2,1le—1,5e—1, 1}. For FB15k-237 and Aristo-v4, we searched over
{0.125,0.25,0.5,1,2,4}. We did grid searches over hyperparameter combinations and
chose the best configuration for each dataset based on validation MRR. We report the
grids for each dataset in Table @, and the best configuration in Table @

Relation Prediction Hyperparameter Ranges Across Models

We experiment with each model on FB15k-237. Note that the original TucKER [Balaze-
vic et al., 2019] includes some training strategies which are not used in CP, ComplEXx,

and TuckER, like dropout, learning rate decay etc. However, for a fair comparison of
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Table A.2: Best hyperparameter configurations and validation MRRs on small datasets.
RP = relation prediction, EP = entity prediction, d = embedding size, d,. = relation em-
bedding size, [r = learning rate, bsz = batch size, reg = regularization, \ = weight on RP.
NA = not applicable.

Dataset RP EP Model d/(d,d,) Ir bsz reg A Dev MRR
v X TuckER (200,100) 0.10 10 0.10 NA 0.920
KINSHIP X CP 2000 0.10 50 0.01 NA 0.897
v v CP 2000 0.10 50 0.05 4.00 0.918
v/ X TuckER (200,50) 0.01 10 0.10 NA 0.686
NATIONS X CP 2000 001 10 0.01 NA 0.855
v v TuckER (200,25) 001 10 0.10 0.25 0.865
v X CP 1000 0.10 500 0.01 NA 0.863
UMLS X v/ ComplEx 1000 0.10 10 0.00 NA 0.968
v/ ¢/ ComplEx 1000 0.01 10 0.00 0.50 0.972

how relation prediction affects each model, we trained all the models conditioned on
similar settings with Adagrad optimiser and N3 regularisation for at most 400 epochs.
We performed grid searches and selected the best hyperparameter configurations accord-
ing to validation MRR. We set the weight of relation prediction to 1 in this experiment.
Table @ lists the grid of the shared hyperparameters. For RESCAL, the regularisation
over predicate matrices can be normalised over the rank to achieve better results. Also,
F2 regularisation empirically performed better than the N3 regulariser for RESCAL. For
TuckER, the ranks for predicate and entity are different. Table @ lists the best hyper-
parameter configuration found by our search.
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Table A.3: Hyperparameter search space for vanilla relation perturbation using Com-
plEx on three datasets. d = embedding size, [r = learning rate, bsz = batch size, reg =

regularization strength.

reg

Dataset d Ir bsz

WNI18RR 100, 500, 1000 le—1,1e—2 100, 500,
1000

FB15k-237 100, 500, 1000 le—1,1e—2 100, 500,
1000

Aristo-v4 500, 1000, 1500 le—1,1e—2 100, 500,
1000

5e—3, le—2, be—2,
le—1, 5e—1,1

5e—4, be—3, le—2,
5e—2,le—1,5e—1,1,
0

0, be—3, le—2, 5e—2,
le—1,5e—1,1

A.2 Additional Results

Additional Metrics for Ablation on Rank

Figure [A.J (MRR), Figure [A.3 (Hits@3) and Figure |A.4 (Hits@10) show additional
metrics for the experiments ablating ranks. The range of the rank is

{25,50, 100, 500, LK, 2K, 3K, 4K }.

Blue indicates training with relation prediction, while red indicates training without pre-

diction.
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Table A.4: Best hyperparameter configurations and the corresponding validation MRR
for ComplEx across datasets with Weighted Relation Perturbation. RP = relation pre-
diction, EP = entity prediction, d = embedding size, [ = learning rate, bsz = batch size,
reg = regularisation strength, \ = relation weighting. NA = not applicable.

Dataset RP EP d Ir bsz reg A Dev MRR
v X 1000 0.10 500 0.5 NA 0.2579
WNISRR X ¢ 1000 0.10 100 0.10 NA 0.4881
v v 1000 0.10 100  0.10 0.050 0.4901
v X 1000 0.10 1000 0.0005 NA 0.2629
FB15k237 X ¢ 1000 0.10 100 0.05 NA 0.3723
v v 1000 0.10 1000  0.05 4.000 0.3937
v X 1500 0.10 1000 0.01 NA 0.1687
Aristo-vd X v/ 1500 001 500 0.01 NA 0.3071
v v 1500 0.10 100  0.05 0.125 0.3144

Table A.5: Hyperparameter search for different KBC models on FB15k-237. d stands
for embedding size, d, for relation embedding size, Ir is learning rate, bsz is batch size,
and reg is regularization strength.

Model dor d,d,) Ir bsz reg
RESCAL 128, 256,512 le—1, 100, 0, 1le—3, be—3,
le—2 500, le—2, 5e—2,
1000 le—1, 5e—1,1
ComplEx 100, 500, 1000 le—1, 100, 0, b5e—4, 5e—3,
le—2 500, le—2, 5e—2,
1000 le—1, 5e—1,1
CP 64, 128, 256,512,4000 1le—1, 100, 5e—3, le—2, be—2,
le—2 500, le—1, 5e—1,1
1000
TuckER (1000, 150), (1000, 100), 1le—1, 100, 5e—3, le—2, be—2,
(400’ 400)’ (500’ 75)’ le—2 500, 16—1, 56—1, 1
1000

(300, 300), (200, 200)
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Table A.6: Best hyperparameter configurations and validation MRR on FB15k-237
across models. RP = Relation Prediction. d is the embedding size, d,. is the relation
embedding size, Ir is the learning rate, bsz is the batch size, and reg is the regularisation
strength.

Model RP dor(d,d,) Ir bsz reg Dev MRR

RESCAL X 512 0.1 500 0.00 0.365
v 512 0.1 100 0.00 0.367
ComplEx X 1000 0.1 100 0.05 0.372
v 1000 0.1 1000 0.05 0.387
CP X 4000 0.1 100 0.05 0.364
v’ 4000 0.1 1000 0.05 0.372
TuckER X (1000,100) 0.1 100 0.10 0.359
v/ (1000,100) 0.1 100 0.50 0.360
n = 0
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Figure A.2: MRR versus Rank for CP on FB15k-237.
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Appendix B

ReFactor GNNs

Here we provide additional technical details and results for Chapter H) Inductive Knowl-

edge Graph Learning with Active Forgetting.

B.1 Technical Details

B.1.1 Proof, Complexity, and Expressiveness

Theorem 1 Proof

In this section, we prove Theorem 1, which we restate here for convenience.

Theorem B.1.1 (Message passing in FMs). The gradient descent operator GD (Equation
) on the node embeddings of a DistMult model (Equation ) with the maximum
likelihood objective in Equation §.3 and a multi-relational graph T defined over entities

& induces a message-passing operator whose composing functions are:

[ elwl @ g i (r,w) € N,

(@l ol {(1—Pe<v|w,r>>¢[w]@g<r> o) eN ;O

aa({mfv,r,w] © (r,w) € N'[v]}) = Z mlv, r,wl; (B.2)
(rw)eN[v]

qu(P[v], 2[v]) = ¢[v] + az[v] — Bnlv], (B.3)
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where, defining the sets of triplets T~ = {(s,r,0) € T : s #v Ao # v},

M
nll =77

7

E
T

Ery  Buvryun 9(r)O0[ul + Py(vls, r)g(r)0dls], (B.4)

where PN}r ] and Pr—. are the empirical probability distributions associated to the re-

spective sets.

Proof. Remember that we assume that there are no triplets where the source and the
target node are the same (i.e. (v,7,v), withv € £ and r € R), and let v € £ be a node

in £. First, let us consider the gradient descent operator GD over v’s node embedding

¢[v]:

GD(6, ol =olul +a 3. FEZRIND,
(v,r,w)ET

The gradient is a sum over components associated with the triplets (v,r,w) € T ; based
on whether the corresponding triplet involves v in the subject or object position, or does

not involve v at all, these components can be grouped into three categories:

1. Components corresponding to the triplets where v = v Aw # v. The sum of these

components is given by:

Jlog P(w o' (v,r,w) Ol (v, r,u)
TR > [ ~ 2 Pl ) 50 ]

(v,r,w)eT W)ET

_ ¥ oo - 2 ZP(uw,r)g(r)@qs[uJ.

(r,w)eNT[v] (vr,w)eT u

2. Components corresponding to the triplets where v # v Aw = v. The sum of these

components is given by:

Jlog P(v|v,r) _ or'(v,r,v) " (9F (v,r,u)
2 T 2 [ 2 P ]

(v,r,0)eT (v,r,v)ET
= Y s edd - PWlv.o).
(v,;r)EN ]

3. Components corresponding to the triplets where v # v Aw # v. The sum of these
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components is given by:

Z 810gP(w|v,r): Z 0—2P(u|v,r)ar(v’r’u)

(vir,w)eT 8¢[U] (v,r,w)eT a¢[v]
II'(v,r,v)
= _P '
(V%g (vl v, =500
= Y —P|v.r)g(r) © ¢[v].
(v,r,w)eT

Collecting these three categories, the GD operator over ¢[v], or rather the node repre-

sentation update in DistMult, can be rewritten as:

GD(¢, T)[v] (B.5)
=opl+a > dwogn+ DY oMoyl (1-Pllvr)  (B6)
{(r,w)eN] [v]} (r,v)ENL[v]

Vv
v’s neighbourhood—v

—a > P(|v,r)g() © ¢V —a Y > Plufo,r)g(r) © ¢lu]. (B.7)

(v,r,w)ET ,v£v,WH#V (v,r,w)ET u

~
beyond neighbourhood—v

Note that the component “v’s neighbourhood — v (highlighted in red) in Equation
@ is a sum over v’s neighbourhood — gathering information from positive neighbours
o[w], (-, w) € M[v] and negative neighbours ¢[v], (-, v) € N[v]. Hence, each atomic
term of the sum can be seen as a message vector between v and v’s neighbouring node.
Formally, letting w be v’s neighbouring node, the message vector can be written as fol-

lows

Slw] © g(r), if (r,w) € Ni[v],
Plw] © g(r)(1 = P(ofw,r)), if (r,w) € N[v],
(B.8)

m[v,r, w] = QM(¢[U]7Ta ¢[w]) =

which induces a bidirectional message function ¢);. On the other hand, the summation
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over these atomic terms (message vectors) induces the aggregate function ga:

2[v] = aa({mlv, r,w] + (r,w) € N [u]})

= Z m'[v,r, W] + Z v, 1, 0] Z mlv,r, w). (B.9)

(r,w)eN ] (r,v)eEN[v] (r,w)eEN V]

Finally, the component “beyond neighbourhood — v” (highlighted in blue) is a term
that contains dynamic information flow from global nodes to v.
If we define

Z S Plufo,r)g(r) © ¢lu]

(vr,w)eT u

1
+ = > P|v,ngr) @ ¢, (B.10)
|T‘ (v,r,w)ET
VHEV,WHV
the GD operator over ¢[v] then boils down to an update function which utilises previous
node state ¢[v], aggregated message z[v] and a global term n[v] to produce the new node

state:

GD(¢, T)[v] = qu(9[v], 2[v]) = ¢[v] + az[v] — Bn[v]. (B.11)

Furthermore, n[v] can be seen as a weighted sum of expectations by recasting the sum-

mations over triplets as expectations:

Nifv
n['U] = | ‘j}-[| ]|E(v,r,w)wPNi[U]EUNP(-W,I)g(r) © ¢[U]
(B.12)
T v
U B e, Pl )al0) © 0l

where 7% = {(v,r,V') € T|v # v AV # v} is the set of triplets that do not contain
v. []
Extension to AdaGrad and N3 Regularisation

State-of-the-art FMs are often trained with training strategies adapted for each model
category. For example, using an N3 regulariser [Lacroix et al,, 2018] and AdaGrad

optimiser [Duchi et al., 201 1]], which we use for our experiments. For N3 regulariser, we
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add a gradient term induced by the regularised loss:

OL _ OLw | \OLws _ OLw . 0o
90Tl ~ Bof] T\ glu] ~ ogpe] T SiEnellel

where Ly is the training loss, Ly, is the regularisation term, sign(-) is an element-wise
sign function, and A € R, is a hyperparameter specifying the regularisation strength.
The added component relative to this regulariser fits into the message function gy (¢[v], r, p[w])

as follows:

Plw] © g(r) — Asign(¢[w]) ¢[w]?, if (r, w) € Ni[v],

m(-) =
! $lw] © g(r) (1 = P(v|w,r)) — Asign([w]) ¢[w]?, if (w,r) € N[v].

(B.13)

Our derivation in Section @ focuses on (stochastic) gradient descent as the optimiser
for training FMs. Going beyond this, complex gradient-based optimisers like AdaGrad
use running statistics of the gradients. For example, for an AdaGrad optimiser, the gra-
dient is element-wisely re-scaled by ﬁVW]L where s is the running sum of squared
gradients and € > 0 is a hyperparameter added to the denominator to improve numerical

stability. Such re-scaling can be absorbed into the update equation:

AdaGrad(¢, T)[v] = ¢[v] + (ez[v] = fnv]) ¥ —=—=—.
slv] + €

In general, we can interpret any auxiliary variable introduced by the optimiser (e.g. the

velocity) as an additional part of the entities and relations representations on which mes-

sage passing happens. However, the specific equations would depend on the optimiser’s

dynamics and would be hard to formally generalise.

Extensions to Other Score Functions e.g. ComplEx

The two main design choices in Theorem are 1) the score function I', and 2) the
optimization dynamics over the node embeddings. We chose DistMult and GD because
of their mathematical simplicity, leading to easier-to-read formulas. We can adapt the

theorem to general, smooth scoring functions I' : .£ x R x & — R by replacing oc-
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currences of the gradient of DistMult with a generic VI (the gradient of DistMult w.r.t.
¢[v] at (v, r,w) is simply g(r) ® ¢[w]). This gives us the following lemma:

Lemma B.1.2 (Message passing in FMs). The gradient descent operator GD (| ) on
the node embeddings of a general score function with the maximum likelihood objective
in Equation §.3 and a multi-relational graph T defined over entities £ induces a message-

passing operator whose composing functions are:

| V) ) €N, g
au(9lel, 7 9lw]) = { (1= Py(vjw,r)) Ve '(w,r,v) if (r,w) € N2[v]; (B9
g ({mlv,rw] = (rw) e Nl = Y mv,rw); (B.15)
(ryw)eNT[v]
qu(o[v], z[v]) = ¢[v] + az[v] — Bn[v], (B.16)
where, defining the sets of triplets T~V = {(s,r,0) € T : s # v Ao # v},
A1
nfv] = | |—;'[’1}]‘EPN}r[v]EUNPG('WW)VMU]F(U?Tv )
+ %EPT_U Fy(v|s,r)VguI'(s,r,v) (B.17)

where PNi (v] and Pr—. are the empirical probability distributions associated to the re-

spective sets.

Accordingly, the node representation updating equations in Section can be re-

written as follows

GD(¢, {(v,r,w)})[v] = ¢v] + o | V(v 7, w)— Z Po(ulv, r) Ve I'(v,r,u) |,
—_———

ue€
w—rv N\ J/
vV

U—v

GD(¢7 {(U7 r, w)}>[w] = ¢[w] + a(l - PG(w|U7 T)) V(b[w]r(va r, w),

J/

~
v—w
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GD(o, {(v,r,w)})[u] = olu] + « :Pg(u|v, )Vl (v, 7, u)J

VU

VI' can be different for different models. For example, here we offer a specific
derivation for ComplEx [Trouillon et all, 2016]. Let d = K /2 be the hidden size for

ComplEx. The ComplEx score function is given as follows

L(v,r,w) =< Y[rl.a), Bv]0:ay: Pl 0:0) > + < Y[r0:0), V)@@, Blw](a) >

(B.18)
+ < Y[rlay, @[] a), lwlay > — < P[]y, o[v]iay, Plwla) >

where (0 : d) indicates the real part of the complex vector and (d :) indicates the image

part of the complex vector. The gradients of the ComplEx score function with respect

to the real/image node representations are given by g{;g{oi) = Y[r]0:a) © dlw]o:a) +

Ylrlay © dlwlay Faar2 = vlrloa © dlwlw — Ylrlw © élwlon, GHued =
Ul 0.0 @Bl ioa) — ) ©Dlvlay, Gaare = Yl oa @Sl + ¥l @[l 0.

Concatenating gradients for the real part and the image part, we have the gradients

Ol (v,r,w) O (v, 7, w)
0[]0y~ OBy

Ol (v, r,w) H Ol (v, r,w)
0o[w]o.a) = Odlwla

Vol (v,r,w) =

Vg l'(v,7,w) =

Complexity

We can analyse the scalability of REFacTror GNNs along three axes, the number of layers
L, the embedding size d, and the number of triplets/edges in the graph |7 |. For scala-
bility w.r.t. to the number of layers, let L denote the number of message-passing layers.
Since REFactor GNNs tie the weights across the layers, the parameter complexity of
ReFactor GNNs is O(1), while it is O(L) for standard GNNs such as GATs, GCNs, and
R-GCNs. Additionally, since REFAcTor GNNSs adopt layer-wise training enabled via the

external memory for node state caching, the training memory footprint is also O(1) as
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opposed to O(L) for standard GNNs. For scalability w.r.t the embedding size, let d de-
note the embedding size. REFacTor GNNs scale linearly with d, as opposed to most
GNNss in literature where the parameter and time complexities scale quadratically with
d. For scalability w.r.t. the number of triplets/edges in the graph, we denote the entity set
as &, the relation set as R, and the triplets as 7. NBFNet requires O(LT?d + LTV d?)
inference run-time complexity since the message-passing is done for every source node
and query relation — quadratic w.r.t the number of triplets 7 while REFaAcTor GNNs are
of linear complexity w.r.t 7. Extending the complexity analysis in NBFNet [Zhu et al,,
2021]] to all the triplets, we include a detailed table for complexity comparison in Table

. The inference complexity refers to the cost per forward pass over the entire graph.

Table B.1: Complexity comparison across models. All expressions are asymptotic in
big-O notation.

Model #Param  Train Mem. Infer. Mem. Train Time
GAT O(Ldg) O(L|V|d) O(L|V|d) O(L\V\d2 + L|T|d)
R-GCN O(L|R|d2) O(L|V|d) O(L|V|d) O(L|T\d2 + L|V|d2)
NBFNet O(L|R|d?*) O(L|V||T|d) O(L|V||T|d) O(L|T|?*d+ L|T||V|d?)

) ) ) )

ReFactor GNNs O(|R|d o(|V|d O(L|V|d o(T||V|d

Expressiveness of FMs, GNNs and REFAcTtor GNNs

We envision one interesting branch of future work would be a unified framework of
expressiveness for all three model categories: FMs, GNNs and REFactor GNNs. To
the best of our knowledge, there are currently two separate notions of expressiveness,
one for FMs and the other for GNNs. While these two notions of expressiveness are
both widely acclaimed within their own communities, it is unclear how to bridge them
and produce a new tool supporting the analysis of the empirical applications (REFacTor

GNN’s) that seam the two communities.

Fully Expressiveness for Adjacency Recovery. Inthe FM community, an FM is said
to be fully expressive [Kazemi and Poole, 2018] if, for any given graph T over entities £
and relations R, it can fully reconstruct the input adjacency tensor with an embedding

size bounded by min(|E||R|, |7 |+ 1). We can generalise this expressiveness analysis to
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the spectrum of FM-GNN models (REFacTtor GNNs). In the L — oo limit, REFAcTOR
GNNss are as fully expressive as the underlying FMs. In fact, a REFAcTor GNN based on
DistMult [Yang et al), 2015b] is not fully expressive (because of its symmetry); however
a REFacTor GNN based, e.g. on ComplEx [[Trouillon et al), 2016, Lacroix et al., 2018§]

can reach full expressiveness for L — oc.

Weisfeiler-Leman Tests for Nodes/Graphs Separation. For GNNs, established the-
orectical results on expressiveness mainly focus on the separation power of induced rep-
resentations in terms of Weisfeiler-Leman isomorphism tests [Xu et al., 2019, Geerts
and Reutter, 2021|]]. However, none of these results is directly applicable to our setting
(e.g. they only consider one relationship). Nevertheless, if we consider our REFAcTOR
GNNss in a one-relationship, simple graph setting, following the formalism of Geerts and
Reutter [2021], we note that the REFacTor Layer function cannot be written in Guarded
Tensor Language since at each layer it computes a global term n[v]. Moreover, REFac-
ToR GNNs only process information coming from two nodes at one time. These two
facts imply that REFactor GNNs have a separation power upper bound comparable to
the 1-WL test, i.e. comparable to 1-MPNN (not guarded).

We are not aware of explicit connections between the two above notions of expres-
siveness. We think there is some possibility that we can bridge them, which itself will
be a very interesting research direction, but would require a very substantial amount of
additional work and presentation space and is thus beyond the scope of this chapter.

Alternatively, we can also increase the expressiveness of REFActor GNNs by adding
more parameters to the message, aggregation and update operators. For example, intro-
ducing additional MLPs to transform the input node features or include non-linearity in
the GNN update operator. This would be a natural way to increase the expressiveness of
ReFacTtor GNNSs.

Another method for increasing expressive power for link prediction task only is to
extend ReFactor GNNs from node-wise to pair-wise (Sec ) representations like
GralL [[Teru et al., 2020] and NBFNet [Zhu et al., 2021|], which is more computation-
ally intensive, but yields more powerful as node representations are not standalone but
adapted to a specific query.
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B.1.2 Experimental setup, Hyperparameters, and Implementation

As we stated in the experiments section, we used a two-stage training process. In stage
one, we sample subgraphs around query links and serialise them. In stage two, we load
the serialised subgraphs and train the GNNs. For transductive knowledge graph comple-
tion, we test the model on the same graph (but different splits). For inductive knowledge
graph completion, we test the model on the new graph, where the relation vocabulary is
shared with the training graph, while the entities are novel. We use the validation split
for selecting the best hyperparameter configuration and report the corresponding test
performance. We include reciprocal triplets into the training triplets following standard
practice [Lacroix et all, 2018].

For subgraph serialisation, we first sample a mini-batch of triplets and then use these
nodes as seed nodes for sampling subgraphs. We also randomly draw a node globally
and add it to the seed nodes. The training batch size is 256 while the valid/test batch size
is 8. We use the LADIES algorithm [Zou et al., 2019] and sample subgraphs with depths
in [1,2,3,6,9] and a width of 256. For each graph, we keep sampling for 20 epochs, i.e.
roughly 20 full passes over the graph.

For general model training, we consider hyperparameters including learning rates in
[0.01,0.001], weight decay values in [0,0.1,0.01], and dropout values in [0,0.5]. For
GATs, we use 768 as the hidden size and 8 as the number of attention heads. We train
GATs with 3 layers and 6 layers. We also consider whether to combine the outputs
from all the layers. For REFActor GNNs, we use the same hidden size as GAT. We
consider whether the ReFactor Layer is induced by an SGD operator or by a AdaGrad
operator. Within a ReFactor Layer, we also consider the N3 regulariser strength values
[0,0.005,0.0005], the « values [0.1,0.01], and the option of removing the n[v], where
the message-passing layer only involves information flow within 1-hop neighbourhood
as most the classic message-passing GNNs do.

We use grid search to find the best hyperparameter configuration based on the val-
idation MRR. Each training run is done using two Tesla V100 (16 GB) GPUs with,
where data parallelism was implemented via the DistributedDataParallel component
of pytorch-lightning. For inductive learning experiments, inference for all the valida-
tion and test queries on small datasets like FB15K237_v1 takes about 1-5 seconds,

while on medium datasets it takes approximately 20 seconds, and on big datasets like
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WNI18RR_v4 it requires approximately 60 seconds. For most training runs, the memory
footprint is less than 40% (13 GB). The training time for 20 full passes over the graph is
about 1, 7, and 21 minutes respectively for small, medium, and large datasets.

Our code will be available at ReFactorGNN. We adapted the LADIES subgraph sam-
pler from the GPT-GNN codebase [Hu et al., 2020] for sampling on knowledge graphs.
The datasets we used can be downloaded from the repositories Datasets for Knowledge
Graph Completion with Textual Information about Entities and GralL - Graph Induc-
tive Learning. We implemented REFAcTor GNNs using the MessagePassing API in
PyTorch Geometric. Specially, we used message_and_aggregate function to compute

the aggregated messages.

B.2 Additional results

Additional Results on Inductive KGC Tasks

In this chapter, we describe the results on FB15K237_v1_ind under some random seed.
To confirm the significance and sensitivity, we further experiment with additional 5 ran-
dom seeds. Due to our computational budget, for this experiment, we resorted to a coarse
grid when performing the hyperparameters sweeps. Following standard evaluation pro-
tocols, we report the mean values and standard deviations of the filtered Hits@ 10 over
5 random seeds. Numbers for Neural-LP, DRUM, RuleN, Grall., and NBFNet are taken
from the literature [[Teru et al., 2020, Zhu et al., 2021]. “-” means the numbers are not
applicable. Table @ summarises the results. REFactor GNNs are able to make use
of both types of input features, while textual features benefit both GAT and ReEFacTor
GNNs for most datasets. Increasing depth benefits WN18RR _vi_ind (i € [1,2,3,4])
most. Future work could consider the impact of textual node features provided by dif-
ferent pretrained language models. Another interesting direction is to investigate the
impact of depth on GNNs for datasets like WN18RR, where many kinds of hierarchies
are observed in the data.

In addition to the partial ranking evaluation protocol, where the ground-truth sub-
ject/object entity is ranked against 50 sampled entities, we also consider the full ranking

evaluation protocol, where the ground-truth subject/object entity is ranked against all the

!One implementation for such evaluation can be found in GralL’s codebase.
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Table B.2: The impact of meaningful node features on FBI5K237_vi. A Test MRR
is computed as test MRR (textual node features) — test MRR (random node
features). Larger A means meaningful node features bring more benefit.

Depth 3 6 oo

A Test MRR  0.060 0.045 0.016

entities. Table @ summarises the results. Empirically, we observe that full ranking is
more suitable for reflecting the differences between models than partial ranking. 1t also
has less variance than partial ranking, since it requires no sampling from the candidate
entities. Hence, we believe there is good reason to recommend the community to use

full ranking for these datasets in the future.

Additional Results on The Impact of Meaningful Node Features

To better understand the impact that meaningful node features have on REFactor GNNs
for the task of knowledge graph completion, we compare REFacTor GNNss trained with
RoBERTa Encodings (one example of meaningful node features) and REFactor GNNs
trained with Random Vectors (not meaningful node features). We perform experiments
on FB15K237_v1 and vary the number of message-passing layers: L € {3,6,00}. Table
@ summarises the differences. We can see that meaningful node features are highly
beneficial if REFacTtor GNNs are only provided with a few message-passing layers. As
more message-passing layers are allowed, the benefit of REFactor GNNs diminishes.
The extreme case would be L. = oo, where the benefit of meaningful node features
becomes negligible. We hypothesise that this might be why meaningful node features

have not been found to be useful for transductive knowledge graph completion.

Additional Results on Parameter Efficiency

Figure shows the parameter efficiency on the dataset FBI5K237_v2.
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Figure B.1: Performance vs parameter efficiency on FBI5K237_v2. The left axis is Test
MRR while the right axis is #Parameters. The solid lines and dashed lines indicate the
changes of Test MRR and the changes of #Parameters.
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Appendix C

Language Model Plasticity

Here we provide additional technical details and results for Chapter 4 Improving Lan-

guage Plasticity via Pretraining with Active Forgetting.

C.1 Technical Details

C.1.1 Low-data Experimental Regime

A common experimental setup for adapting to a target language is to use all the available
data in that language from sources such as Wikipedia [Artetxe et al/, 2020, Ansell et all,
2022] and CC100 [Marchisio et al}, 2023]. In this setup, the numbers of tokens typically
used for adapting each language might differ greatly, ranging from 13.9M to 70.5B, as
summarised via Table .

Our work, however, investigates a different setup where we control the adaptation
data to 5 million tokens for each language. This can be highly relevant when studying
generalisation to completely new languages, which require expanding the vocabulary.
We acknowledge that dealing with real-world low-resources languages can be more chal-
lenging than such low-data setup used. And there are already rich work addressing low-
resource issues: multilingual pretraining [Conneau et alJ, 2020, Pfeiffer et all, 2022],
multilingual adapters [Pfeiffer et al., 2020, Ansell et al., 2022], multilingual adaptation
[Tang et all, 2020, |Alabi et al), 2022], and multilingual regularisation [Pfeiffer et al.,
2021]. Nevertheless, we would like to highlight the importance of our low-data regime.

The challenge of “low-resource” involve multiple entangled factors: the quality of the
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tokeniser, the amount of data, whether the script/language family is distant to the pre-
training language(s) etc. Simulating a low-data regime allows us to control these factors
and isolate the effects of the factor that we are interested in — the amount of data in the
new language. This factor is essential to our work as our research goal is plasticity i.e.
rewiring model prediction with as little new information as possible. Simulating vari-
ous amount of data in the new language allows us to compare model plasticity as shown
in Figure @, and thus contribute a clean piece of knowledge in the line of plasticity
research [Lyle et al/, 2023, Nikishin et all, 2023].

C.1.2 On the Experimental Framework Choice for Studying Pre-
trained Language Model Plasticity

Our motivation is to improve language models’ plasticity. Plasticity of neural networks
have been studied in graph learning, computer vision and reinforcement learning [[Taha
et al), 2021|, Chen et al., 2022, Lyle et al., 2023, Nikishin et al., 2023], where forgetting-
relearn methods show promise. Our goal is to study plasticity in the context of pretrained
language models. We believe this is n emerging research direction and will thrive in the
following years. However, translating the plasticity concept to the language model setting
is not trivial due to the lack of clear experimental setups. We note that, despite the model
differences, almost all language models begins with a token embedding layer. As often
tied to a specific vocabulary, the token embedding layer limits the plasticity, preventing
generalisation to a new vocabulary. This observation inspires us to explore the plasticity
of language models by manipulating the token embedding layer. Artetxe et al) [2020]
draws our attention as it offers a nice experimental framework of only manipulating the

token embedding layer for adapting between languages.

C.2 Additional Results

Results on Distant Languages Benefits More From Forgetting

We are interested in how forgetting PLMs can improve adaptation to different languages.
We compare the results of various languages on three benchmarks: XNLI, MLQA and
XQuAD. We use Figure @, Figure @, and Figure to illustrate the relative gains
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Table C.1: Languages by family, script, and morphology.

Name Code Family Script Morphology
Arabic ar Semitic Arabic (Abjad) Introflexive
Bulgaria bg IE:Balto-Slavic Cyrillic Analytic
German de IE:Germanic Latin Fusional
Greek el IE:Hellenic Greek Fusional
English en IE:Germanic Latin Analytic
French fr IE:Romance Latin Fusional
Hindi hi IE:Indo-Iranian Devanagari Fusional
Russian ru IE:Balto-Slavic Cyrillic Fusional
Spanish es IE:Romance Latin Fusional
Swahili SW Niger-Congo:Bantu  Latin Agglutinative
Thai th Tai-Kadai Thai Analytic
Turkish tr Turkic Latin Agglutinative
Urdu ur IE:Indo-Iranian Perso-Arabic Fusional
Vietnamese Vi Austroasiatic Latin Analytic
Chinese zh Sino-Tibetan Chinese Analytic

from active forgetting on each benchmark. We find that languages that are less related
to the pretraining language, which in this case is English, benefit more from forgetting
PLMs.

Results on Forgetting PLMs Converge Faster

Figure @ displays the adaptation curves for several languages (Arabic, German, Hindi,
Thai, Turkish, and Urdu) during full training runs of 125,000 steps. This complements
Figure @, which focuses on the first 5,000 steps. Similar convergence patterns can be

observed for additional languages, as shown in Figure @ and Figure @

Impact of Forgetting Frequency

We would like to elaborate on our choice of forgetting frequency K. In our preliminary
experiments, we tried K = 100, 1000, 5000. We find K = 1000 works well and thus

sticks with it. Since we don’t want to over tune the hyperparameters, we just use the same
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Table C.2: Numbers of tokens for different languages on the two multilingual corpus,
CC-100 and Wikipedia, in ascending order of CC100. The English one is used as pre-
training corpus while the others are used for language adaptation.

Language CC-100 Tokens Wikipedia Tokens

SW 345M 13.9M
ur 832M 41.5M
hi 2.13B 54.6M
ar 4.15B 337M
tr 4.19B 157M
th 6.09B 70.7M
el 6.10B 148M
bg 7.90B 134M
zh 9.72B 584M
es 11.6B 1.17B
fr 13.3B 1.71B
de 14.1B 2B
vi 28.9B 300M
ru 349B 1.25B
en 70.5B 4.25B

K for all the experiments. We include the loss curves of X' = 100 and K = 5000 in
Figure @ We can see that both forgetting too frequently and forgetting too infrequently
will hurt the performance. Too frequent forgetting leaves little time for the body to learn
something meaningful (the pretraining loss stuck around 11). Too sparse forgetting will
make the body hard to adjust to the next forgetting, causing divergence as pretraining

goes on.

Multilingual Pretraining and Forgetting Pretraining

Our work aim to have a flexible language model by pretraining with forgetting. No matter
the pretraining corpus is monolingual or multilingual, this language model should easily
generalise itself to unseen languages. This is different from the scenario of multilingual
PLMs like XILM-R [Conneau et al., 2020], which requires seeing all the data for all lan-

guages from the scratch. Once done with pretraining and there is some new language dis-
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Relative Gain Across Languages on XQUAD
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Figure C.1: Relative gains of forgetting PLMs over standard PLMs across languages on
XQuAD. Languages that are less related to the pretraining language (English), such as
Turkish, Thai, Arabic, Hindi, benefit more from forgetting PLMs.

tant from the pretraining languages to support, the multilingual PLMs might still struggle
with zero-shot transfer as shown in several low-resources language research [Ebrahimi
et al), 2022, |Adelani et al/, 2021|, 2022].

Nevertheless, we ran additional experiments on multilingual pretraining with forget-
ting. The results are summarised in Table @ For a fair comparison, we trained a mul-
tilingual RoBERTa-base of the same model size as our monolingual model. Language
Emb/Task Body Adaptation refers to separately adapting embeddings with SM tokens of
Thai unlabelled data and adapting body with English NLI data. Task Full Model Adap-
tation refers to adapting the full model with English NLI data. Note that Thai is already
included in multilingual CC100 (6B tokens in the original dataset, 720M tokens in our
subsampled dataset). We measure the zero-shot Thai XNLI Accuracy. We can see that
multilingual pretraining indeed helps cross-lingual transfer when the language is in the
pretraining data. On the other hand, we can also observe that forgetting indeed lifts the

adaptation performance:
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Figure C.2: Adaptation curves on XNLI for individual languages: Arabic, German,
Hindi, Thai, Turkish, and Urdu. Forgetting helps more languages that are distant to
English (the pretraining language).

e Comparing Row 3 and Row 4 (49.4 vs 55.0) in Table @, we can see that, forget-

ting also helps adapt multilingual pretrained models.

* Comparing Row 1 and Row 2 (35.3 vs§ 59.7) in Table @, we can see that forgetting

helps monolingual pretrained models a lot.

* XLM-R (base) outperform best our multilingual pretrained baselines (72.4 vs 60.0).
This is no surprise due to its large pretraining corpus (10x our multilingual cor-

pora) and model size (2x our multilingual model).

Full Model Task Adaptation and Forgetting

The language/task adaptation does not use any labelled data. It only uses the unlabelled
data from the new language. In contrast, Standard adaptation relies on labelled data,
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Figure C.3: Adaptation curves on XNLI within 5K updates for individual languages:
Bulgaria, Greek, Spanish, French, Russian, Swahili, Vietnamese and Chinese. Forget-
ting PLMs converge faster than standard PLMs.
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Figure C.4: Adaptation curves on XNLI for individual languages: Bulgaria, Greek,
Spanish, French, Russian, Swahili, Viethamese and Chinese. Across all the languages
except on Vietnamese, the forgetting PLMs reach a better performance level than their

standard counterparts.
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Training Loss of Forgetting LM with Different Forgetting Frequencies
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Figure C.5: Impact of Forgetting Frequency.
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Table C.3: Comparing various ways to make models multilingual. The pretraining archi-
tectures are all ROBERTa (base). Standard refers to standard monolingual pretraining.
Forget refers to active forgetting based monolingual pretraining. XL.M refers to multi-
lingual pretraining like the XILM work [Conneau et al., 2020]

Pretrain Corpus #Lang #Param Pretrain Adaptation Method Acc
300GB English 1 125M Standard Lang Emb/Task Body 35.3
300GB English 1 125M Forget Lang Emb/Task Body 59.7
50GB Multilingual 100 125M Standard Lang Emb/Task Body 49.4
50GB Multilingual 100 125M Forget Lang Emb/Task Body 55.0
50GB Multilingual 100 125M Standard Task Full Model 60.0
2.5TB Multilingual 100 270M XLM Task Full Model 72.4

which is expensive for a new downstream language.

Here we present an additional experiment to compare full model adaptation and

partial model adaptation. Our experimental setup follows Artetxe et al. [2020], where

standard-pretraining + language/task adaptation (MonoTIrans) is shown to be competi-

tive among a few baselines for zero-shot unsupervised cross-lingual transfer. Results in

Table @ verify this. Our proposed forgetting method can further improve the sample-

efficiency of the language/task adaptation, surviving a low amount of unsupervised data

in the new language. This is motivated by a practical scenario where the new languages

contain only several thousands of tokens to a few millions of tokens (e.g. the corpus for

the new language might contain only 2-3 books).
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Table C.4: Full model adaptation vs. partial model adaptation. Sup. refers to the amount
of supervised data (tokens), and Unsup. refers to the amount of unsupervised data used.

Method Sup. Unsup. Acc
standard pretraining + standard adaptation 6.7K 0 328
standard pretraining + language/task adaptation 0 SM 412
forget pretraining + standard adaptation 6.7K 0 342
forget pretraining + language/task adaptation 0 5SM  59.7

Impact of Adaptation Data Amount

Evidence of high sample efficiency can be found by comparing the performance drop of
standard PLMs and forgetting PLMs when the adaptation data change from a high-data
setting [Artetxe et al., 2020, Marchisio et al., 2023] to a low-data setting that our work

is considering, as shown in Table @

Table C.5: Comparison of adaptation data amount.

Method Avg adaptation #tokens Avg XNLI Acc
Standard [Marchisio et al., 2023] 10.3B 72.0
Standard [Artetxe et al/, 2020] 569M 66.7
Standard M 53.3
Forgetting M 62.7
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